Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substitution, electrophilic orientation

Structural changes affect seriously an electrophilic substitution orientation in pyrroles owing to their low positional selectivity in reactions with electrophiles. Thus, in contrast to thiophene, selenophene, and, especially, furan analogues, even a relatively weak type 11 substituent in position 2 of the pyrrole ring is capable of overcoming the a-oiienting effect of the heteroatom and directs an electrophile preferably to the position 4 (68JCS(B)392). N-(p-Nitrophenyl)pyrrole-2-carbaldehyde... [Pg.165]

Thallium compounds are very poisonous, and must be handled with extreme care. Although substituent groups affect the reactivity of the aromatic substrate as expected for electrophilic substitution, orientation is unusual in a number of ways, and it is here that much of the usefulness of thallation lies. Thallation is almost exclusively para to —R, -Cl, and OCH3, and this is attributed to the bulk of the electrophile, thallium trifluoroacetate, which seeks out the uncrowded para position. [Pg.351]

The use of q and tt separately as reactivity indices can lead to misleading results. Thus, whilst within the approximations used, the use of either separately leads to the same conclusions regarding electrophilic substitution into halogenobenzenes ( 9.1.4), the orientation of substitution in quinoline ( 9.4.2) cannot be explained even qualitatively using either alone. By taking the two in combination, it can be shown that as the values of Sa are progressively increased to simulate reaction, the differences in SE explain satisfactorily the observed orientation. ... [Pg.131]

The model adopted by Ri and Eyring is not now acceptable, but some of the more recent treatments of electrostatic effects are quite close to their method in principle. In dealing with polar substituents some authors have concentrated on the interaction of the substituent with the electrophile whilst others have considered the interaction of the substituent with the charge on the ring in the transition state. An example of the latter method was mentioned above ( 7.2.1), and both will be encountered later ( 9.1.2). They are really attempts to explain the nature of the inductive effect, and an important question which they raise is that of the relative importance of localisation and electrostatic phenomena in determining orientation and state of activation in electrophilic substitutions. [Pg.136]

Consideration of the orientation of substitution Orientation is an important factor to be considered in recognising both changes in the effective electrophile and in the nature of the aromatic substrate. Cases of the former type, which will be met at several places... [Pg.159]

M.o. theory has had limited success in dealing with electrophilic substitution in the azoles. The performances of 7r-electron densities as indices of reactivity depends very markedly on the assumptions made in calculating them. - Localisation energies have been calculated for pyrazole and pyrazolium, and also an attempt has been made to take into account the electrostatic energy involved in bringing the electrophile up to the point of attack the model predicts correctly the orientation of nitration in pyrazolium. ... [Pg.194]

From these results it appears that the 5-position of thiazole is two to three more reactive than the 4-position, that methylation in the 2-position enhances the rate of nitration by a factor of 15 in the 5-position and of 8 in the 4-position, that this last factor is 10 and 14 for 2-Et and 2-t-Bu groups, respectively. Asato (374) and Dou (375) arrived at the same figure for the orientation of the nitration of 2-methyl and 2-propylthiazole Asato used nitronium fluoroborate and the dinitrogen tetroxide-boron trifluoride complex at room temperature, and Dou used sulfonitric acid at 70°C (Table T54). About the same proportion of 4-and 5-isomers was obtained in the nitration of 2-methoxythiazole by Friedmann (376). Recently, Katritzky et al. (377) presented the first kinetic studies of electrophilic substitution in thiazoles the nitration of thiazoles and thiazolones (Table 1-55). The reaction was followed spec-trophotometrically and performed at different acidities by varying the... [Pg.104]

Reactions. The CF O— group exerts predominant para orientation in electrophilic substitution reactions such as nitration, halogenation, acylation, and alkylation (350). [Pg.333]

Resonance effects are the primary influence on orientation and reactivity in electrophilic substitution. The common activating groups in electrophilic aromatic substitution, in approximate order of decreasing effectiveness, are —NR2, —NHR, —NH2, —OH, —OR, —NO, —NHCOR, —OCOR, alkyls, —F, —Cl, —Br, —1, aryls, —CH2COOH, and —CH=CH—COOH. Activating groups are ortho- and para-directing. Mixtures of ortho- and para-isomers are frequently produced the exact proportions are usually a function of steric effects and reaction conditions. [Pg.39]

Hydrochlorination. The addition of hydrogen chloride to alkenes in the absence of peroxides takes place by an electrophilic substitution mechanism. The orientation is in accord -with Markovnikov s mle in -which the hydrogen atom adds to the side of the double bond that -will result in the... [Pg.508]

It is also of significance that in the dilute gas phase, where the intrinsic orientating properties of pyrrole can be examined without the complication of variable phenomena such as solvation, ion-pairing and catalyst attendant on electrophilic substitution reactions in solution, preferential /3-attack on pyrrole occurs. In gas phase t-butylation, the relative order of reactivity at /3-carbon, a-carbon and nitrogen is 10.3 3.0 1.0 (81CC1177). [Pg.45]

In compounds with a fused benzene ring, electrophilic substitution on carbon usually occurs in the benzenoid ring in preference to the heterocyclic ring. Frequently the orientation of substitution in these compounds parallels that in naphthalene. Conditions are often similar to those used for benzene itself. The actual position attacked varies compare formulae (341)-(346) where the orientation is shown for nitration sulfonation is usually similar for reasons which are not well understood. [Pg.85]

The most complete discussion of the electrophilic substitution in pyrazole, which experimentally always takes place at the 4-position in both the neutral pyrazole and the cation (Section 4.04.2.1.1), is to be found in (70JCS(B)1692). The results reported in Table 2 show that for (29), (30) and (31) both tt- and total (tt cr)-electron densities predict electrophilic substitution at the 4-position, with the exception of an older publication that should be considered no further (60AJC49). More elaborate models, within the CNDO approximation, have been used by Burton and Finar (70JCS(B)1692) to study the electrophilic substitution in (29) and (31). Considering the substrate plus the properties of the attacking species (H", Cl" ), they predict the correct orientation only for perpendicular attack on a planar site. For the neutral molecule (the cation is symmetrical) the second most reactive position towards H" and Cl" is the 5-position. The activation energies (kJmoF ) relative to the 4-position are H ", C-3, 28.3 C-5, 7.13 Cr, C-3, 34.4 C-5, 16.9. [Pg.173]

At this point, attention can be given to specific electrophilic substitution reactions. The kinds of data that have been especially useful for determining mechanistic details include linear ffee-energy relationships, kinetic studies, isotope effects, and selectivity patterns. In general, the basic questions that need to be asked about each mechanism are (1) What is the active electrophile (2) Which step in the general mechanism for electrophilic aromatic substitution is rate-determining (3) What are the orientation and selectivity patterns ... [Pg.571]

It should be expected that the orientation and rate of electrophilic substitution in the isoxazole nucleus would be affected by both hetero atoms. Because of the electron-accepting effect of the nitrogen atom, electrophilic substitution of the isoxazole nucleus should proceed less readily than in the case of benzene and should occur essentially at the position jS to the nitrogen atom, just as in pyridine and other azoles. Simultaneously the electron-donating oxygen atom should facilitate such reactions in isoxazole as compared with the substitution in pyridine. These predictions are confirmed by the available experimental evidence. [Pg.382]

Heating isoxazole derivatives with aqueous-alkaline permanganate leads to a complete degradation of the heterocycle. With arylisoxa-zoles this results in readily identifiable aromatic acids, from which can be deduced the orientation of electrophilic substitution reac-tions. ° Also, the stability of various heterocycles can be compared. Thus, under these reaction conditions, the pyrazole ring is more stable than that of isoxazole (cf. 197198). ... [Pg.420]

Electrophilic addition to 1-haloalkenes (e.g. 27), presents a number of parallels to the electrophilic substitution of halobenzenes (p. 155). Thus it is the involvement of the electron pairs on Br that controls the orientation of addition (cf. o-/p-direction in C6H5Br) ... [Pg.185]

Generated from diacetyl peroxide, methyl radicals attack 2-methylfuran at position 5 preferentially if both 2- and 5-positions are occupied as in 2,5-dimethylfuran there is still little or no attack at the 3(4)-position. If there is a choice of 2(5)-positions, as in 3-methylfuran, then that adjacent to the methyl substituent is selected.249 These orientation rules are very like those for electrophilic substitution, but are predicted for radical attack by calculations of superdelocalizability (Sr) by the simple HMO method. Radical bromination by IV-bromsuccinimide follows theory less closely, presumably because it does not occur through a pure radical-chain mechanism.249... [Pg.217]

This short summary has aimed to highlight a few of the more important aspects of the orientation of electrophilic substitution of pyridines and their benzo analogues. Strictly, reactions that involve metallation could be treated under this heading but they will be considered as involving a nucleophilic attack at a ring hydrogen (see Section 2.05.5). Electrophilic cyclizations of a substituent on to a pyridine will be mentioned briefly, but Chapter 2.06 should be consulted for those reactions. [Pg.187]

In general, the likely orientation of electrophilic substitution will be indicated by several factors including the extent of bond fixation, the extent of prior electrophilic attack at... [Pg.317]


See other pages where Substitution, electrophilic orientation is mentioned: [Pg.312]    [Pg.312]    [Pg.3]    [Pg.127]    [Pg.193]    [Pg.213]    [Pg.39]    [Pg.91]    [Pg.48]    [Pg.656]    [Pg.689]    [Pg.774]    [Pg.532]    [Pg.701]    [Pg.876]    [Pg.168]    [Pg.170]    [Pg.532]    [Pg.229]    [Pg.83]    [Pg.1030]    [Pg.35]    [Pg.50]    [Pg.186]    [Pg.187]    [Pg.206]    [Pg.301]    [Pg.67]    [Pg.157]   
See also in sourсe #XX -- [ Pg.101 ]




SEARCH



Electrophilic aromatic substitution orientation

Orientation substitution

Reactivity and Orientation in Electrophilic Aromatic Substitution

© 2024 chempedia.info