Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substitution reactions electrophilic aromatic substitution

Also like benzene, naphthalene undergoes electrophilic aromatic substitution reactions. Substitution occurs preferentially at the 1-position. In common nomenclature, the 1-position is called the a-position and the 2-position is called the j8-position. [Pg.658]

Issues of regioselectivity in the Blanc chloromethylation and related Friedel-Crafts reactions have been studied extensively. As is common with a majority of electrophilic aromatic substitution reactions, substitution typically occurs ortho or para to electron-donating substituents, with issues of steric strain playing a role in the relative ratio of ortho and para products. The Blanc reaction is t3q)ically somewhat regioselective, favoring the para-isomer but accompanied by lesser amounts of the ortho product. ... [Pg.593]

In addition to benzene and naphthalene derivatives, heteroaromatic compounds such as ferrocene[232, furan, thiophene, selenophene[233,234], and cyclobutadiene iron carbonyl complexpSS] react with alkenes to give vinyl heterocydes. The ease of the reaction of styrene with sub.stituted benzenes to give stilbene derivatives 260 increases in the order benzene < naphthalene < ferrocene < furan. The effect of substituents in this reaction is similar to that in the electrophilic aromatic substitution reactions[236]. [Pg.56]

REPRESENTATIVE ELECTROPHILIC AROMATIC SUBSTITUTION REACTIONS OF BENZENE... [Pg.474]

Representative Electrophilic Aromatic Substitution Reactions of Benzene... [Pg.475]

With this as background let us now examine each of the electrophilic aromatic substitution reactions presented m Table 12 1 m more detail especially with respect to the electrophile that attacks benzene... [Pg.477]

Classification of Substituents in Electrophilic Aromatic Substitution Reactions... [Pg.495]

Because the carbon atom attached to the ring is positively polarized a carbonyl group behaves m much the same way as a trifluoromethyl group and destabilizes all the cyclo hexadienyl cation intermediates m electrophilic aromatic substitution reactions Attack at any nng position m benzaldehyde is slower than attack m benzene The intermediates for ortho and para substitution are particularly unstable because each has a resonance structure m which there is a positive charge on the carbon that bears the electron withdrawing substituent The intermediate for meta substitution avoids this unfavorable juxtaposition of positive charges is not as unstable and gives rise to most of the product... [Pg.498]

Section 12 17 Polycyclic aromatic hydrocarbons undergo the same kind of electrophilic aromatic substitution reactions as benzene... [Pg.512]

The orbital and resonance models for bonding in arylamines are simply alternative ways of describing the same phenomenon Delocalization of the nitrogen lone pair decreases the electron density at nitrogen while increasing it m the rr system of the aro matic ring We ve already seen one chemical consequence of this m the high level of reactivity of aniline m electrophilic aromatic substitution reactions (Section 12 12) Other ways m which electron delocalization affects the properties of arylamines are described m later sections of this chapter... [Pg.918]

A nitro group behaves the same way m both reactions it attracts electrons Reaction is retarded when electrons flow from the aromatic ring to the attacking species (electrophilic aromatic substitution) Reaction is facilitated when electrons flow from the attacking species to the aromatic ring (nucleophilic aromatic substitution) By being aware of the connection between reactivity and substituent effects you will sharpen your appreciation of how chemical reactions occur... [Pg.980]

Other typical electrophilic aromatic substitution reactions—nitration (second entry) sul fonation (fourth entry) and Friedel-Crafts alkylation and acylation (fifth and sixth entnes)—take place readily and are synthetically useful Phenols also undergo elec trophilic substitution reactions that are limited to only the most active aromatic com pounds these include mtrosation (third entry) and coupling with diazomum salts (sev enth entry)... [Pg.1002]

Cyclohexadienyl cation (Section 12 2) The key intermediate in electrophilic aromatic substitution reactions It is repre sented by the general structure... [Pg.1280]

Many of the common electrophilic aromatic substitution reactions can be conducted on indole. CompHcations normally arise either because of excessive reactivity or the relative instabiUty of the substitution product. This is the case with halogenation. [Pg.84]

Rate data are also available for the solvolysis of l-(2-heteroaryl)ethyl acetates in aqueous ethanol. Side-chain reactions such as this, in which a delocalizable positive charge is developed in the transition state, are frequently regarded as analogous to electrophilic aromatic substitution reactions. In solvolysis the relative order of reactivity is tellurienyl> furyl > selenienyl > thienyl whereas in electrophilic substitutions the reactivity sequence is furan > tellurophene > selenophene > thiophene. This discrepancy has been explained in terms of different charge distributions in the transition states of these two classes of reaction (77AHC(21)119>. [Pg.69]

Electrophilic aromatic substitution reactions are important for synthetic purposes and also are one of the most thoroughly studied classes of organic reactions from a mechanistic point of view. The synthetic aspects of these reactions are discussed in Chapter 11 of Part B. The discussion here will emphasize the mechanisms of several of the most completely studied reactions. These mechanistic ideas are the foundation for the structure-reactivity relationships in aromatic electrophilic substitution which will be discussed in Section 10.2... [Pg.551]

Isotope effects are also useful in providing insight into other aspects of the mechanisms of individual electrophilic aromatic substitution reactions. In particular, because primary isotope effects are expected only when the breakdown of the c-complex to product is rate-determining, the observation of a substantial points to a rate-... [Pg.566]

These relative rate data per position are experimentally detennined and are known as partial rate factors. They offer a convenient way to express substituent effects in electrophilic aromatic substitution reactions. [Pg.491]

Table 12.2 summarizes orientation and rate effects in electrophilic aromatic substitution reactions for a variety of frequently encountered substituents. It is arianged in order of decreasing activating power the most strongly activating substituents are at the top, the most strongly deactivating substituents are at the bottom. The main features of the table can be summarized as follows ... [Pg.494]


See other pages where Substitution reactions electrophilic aromatic substitution is mentioned: [Pg.680]    [Pg.680]    [Pg.510]    [Pg.950]    [Pg.1003]    [Pg.1004]    [Pg.127]    [Pg.480]    [Pg.551]    [Pg.551]    [Pg.553]    [Pg.555]    [Pg.557]    [Pg.566]    [Pg.575]    [Pg.579]    [Pg.498]    [Pg.510]    [Pg.950]    [Pg.1003]   


SEARCH



Aromaticity electrophilic aromatic substitution

Aromatics electrophilic substitution

Electrophile Electrophilic aromatic substitution

Electrophile reactions Electrophilic aromatic

Electrophilic aromatic reactions

Electrophilic substitution reaction

Substitution electrophilic aromatic

Substitution electrophilic aromatic substitutions

Substitution reactions aromatic

Substitution reactions electrophile

Substitution reactions electrophilic aromatic

© 2024 chempedia.info