Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophiles carbene ligand

For very electrophilic carbene ligands bound to a metal center which also has coordinated an aromatic phosphine ligand,there is the possibility of the following intramolecular substitution reaction leading to a metallacycle ... [Pg.179]

Cyclopropylcarbene complexes of the type L M=C(XR )R2 (X = O, S R1 = alkyl, aryl R2 = cyclopropyl) having a stabilizing heteroalkyl (XR1) group on the electrophilic carbene ligand (Scheme 3) have found widespread application in organic synthesis. These so-called Fischer carbene complexes are best known via their group 6 transition metal carbonyl complexes (CO)5M=(OR )R2(M = Cr, Mo, W)132. Much less abundant are the Schrock-type cyclopropylcarbene complexes L M=CR R2 where no heteroatom is bound to the carbene carbon atom133. [Pg.522]

A decade after Fischer s synthesis of [(CO)5W=C(CH3)(OCH3)] the first example of another class of transition metal carbene complexes was introduced by Schrock, which subsequently have been named after him. His synthesis of [((CH3)3CCH2)3Ta=CHC(CH3)3] [11] was described above and unlike the Fischer-type carbenes it did not have a stabilizing substituent at the carbene ligand, which leads to a completely different behaviour of these complexes compared to the Fischer-type complexes. While the reactions of Fischer-type carbenes can be described as electrophilic, Schrock-type carbene complexes (or transition metal alkylidenes) show nucleophilicity. Also the oxidation state of the metal is generally different, as Schrock-type carbene complexes usually consist of a transition metal in a high oxidation state. [Pg.9]

All around this chapter, we have seen that a,/J-unsaturated Fischer carbene complexes may act as efficient C3-synthons. As has been previously mentioned, these complexes contain two electrophilic positions, the carbene carbon and the /J-carbon (Fig. 3), so they can react via these two positions with molecules which include two nucleophilic positions in their structure. On the other hand, alkenyl- and alkynylcarbene complexes are capable of undergoing [1,2]-migration of the metalpentacarbonyl allowing an electrophilic-to-nucleophilic polarity change of the carbene ligand /J-carbon (Fig. 3). These two modes of reaction along with other processes initiated by [2+2] cycloaddition reactions have been applied to [3+3] cyclisation processes and will be briefly discussed in the next few sections. [Pg.88]

The synthesis and X-ray structural determination of a stable Ir111 hydride/alkylidene complex, (165), has been reported, in which the tridentate N3 ligand is TpMe2. 9 The complex undergoes reversible hydride migration onto the electrophilic carbene atom, as shown in reaction Scheme 20. [Pg.181]

Methylation of the dihaptothioacyl complex 22 affords compound 23 containing a bidentate carbene ligand, which on reaction with chloride ion leads to the neutral monodentate carbene complex 24 (50,51). The chelate carbene complex 26 is generated in a novel interligand reaction from the thiocarboxamidothiocarbonyl cation 25. The thiocarbonyl carbon acts as the electrophilic component in this reaction, and 26 is further alkylated to a bidentate dicarbene species (52). [Pg.137]

Metallacycle Formation Involving Electrophilic Carbene Addition to a Benzene Ring of the PPh3 Ligand... [Pg.179]

Addition of electrophiles to diynyl complexes is expected to occur at either or C, the latter being favored if sterically demanding ligands shielding C and are present. The products are butatrienylidenes and the chemistry of these species is closely related to the chemistry of the related unsaturated carbene ligands (Section VIILB). " ... [Pg.97]

Intramolecular carbon-hydrogen insertion reactions have well known to be elTectively promoted by dirhodium(ll) catalysts [19-23]. Insertion into the y-position to form five-membered ring compounds is virtually exclusive, and in competitive experiments the expected reactivity for electrophilic carbene insertion (3°>2° 1°) is observed [49], as is heteroatom activation [50]. A recent theoretical treatment [51] confirmed the mechanistic proposal (Scheme 15.4) that C-C and C-H bond formation with the carbene carbon proceeds in a concerted fashion as the ligated metal dissociates [52]. Chemoselectivity is dependent on the catalyst ligands [53]. [Pg.348]

Dinuclear Rh(II) compounds are another class of effective catalysts (227). Electrophilic carbenes formed from diazo ketones and dimeric Rh(II) carboxylates undergo olefin cyclopropanation. Chiral Rh(II) carboxamides also serve as catalysts for enantioselective cyclopropanation (Scheme 95) (228). The catalysts have four bridging amide ligands, and... [Pg.111]

Carbene complexes of transition metals [2,21,225-236] are typical representatives of compounds with a double metal-carbon bond. They are seen as derivatives of a two-covalent carbon in their singlet state [226,232,236]. As a rule, the carbene ligand is an effective a-donor and a comparatively weak n-acceptor. Formation of a cr-bond M — C takes place via transference of a nonbonding electronic pair with a nucleophilic a-orbital of the carbenic carbon to the metal atom. Simultaneously, it is also possible to form a 7t-bond as a result of the interaction of symmetrically appropriate metallic d-AO with a vacant electrophilic /7-orbital of the carbene [236,237], This situation is a key factor that determines the polarization of most of the carbene complexes according to type 145 (Fig. 2.6). [Pg.52]

We have already established that the carbene carbon is an electrophilic center and, hence, it should be very easily attacked by nucleophiles. In most reactions we believe that the first reaction step probably involves attachment of a nucleophile to the carbene carbon. In some cases, for instance with several phosphines (49) and tertiary amines (50), such addition products are isolable analytically pure under certain conditions (1 in Fig. 3). For the second step there exists the possibility that the nucleophilic agent may substitute a carbon monoxide in the complex with preservation of the carbene ligand (2 in Fig. 3). One can also very formally think of the carbene complex as an ester type of system [X=C(R )OR with X = M(CO)j instead of X = 0], because the oxygen atom as well as the metal atom in the M (CO) 6 residue are each missing 2 electrons for attainment of an inert gas configuration. So, it is not surprising that the... [Pg.8]

A possible reaction course comes to mind. The A-vinyl-2-pyrrolidone also possesses at the oxygen a nucleophilic center which could attack the electrophilic carbene carbon and could release the carbene ligand from the metal. The intermediate product formed—irrespective of whether it is an open chain or a six-membered ring—then undergoes a heterolytic fragmentation by splitting similar to that observed by Grob (84) (Fig. 7). [Pg.19]

As mentioned earlier, the carbene ligand in our complexes shows nucleophilic character with respect to the metal fragment. Therefore, we decided to combine it with an electrophilic carbene. For this purpose we treated pentacarbonyl[methoxy(phenyl)carbene]chromium(0) with phenyl(tri-chloromethyl) mercury (85). Compounds of this kind have been studied intensively by Seyferth et al. (86) and are known as a source of dihalogeno-carbenes. The carbene complex reacted with the carbenoid compound at... [Pg.20]

As mentioned above, the electrophilic metal carbene complexes are stabilised by the presence of heteroatoms or phenyl rings at the divalent carbon atom, while hydrogen or alkyl groups stabilise the nucleophilic complexes. Therefore, there is a distinction between carbenoids and alkylidenes when designing carbene ligands corresponding to the former or the latter class. [Pg.345]

Acid chlorides are suitable electrophiles. As aromatic and 1-alkenyl halides, bromides and iodides are generally good substrates. Until quite recently, the use of the corresponding chlorides, which are cheaper and often more readily accessible, had been limited to that bearing a strongly electron-withdrawing substituent at a proper position. The use of nickel catalyst [47], bulky phosphine [119], and heterocyclic carbene ligand (Scheme 23, Table 1) [116] enabled aryl chlorides to take part in the reaction. [Pg.100]

There are essentially three different types of transition metal carbene complexes featuring three different types of carbene ligands. They have all been named after their first discoverers Fischer carbenes [27-29], Schrock carbenes [30,31] and WanzUck-Arduengo carbenes (see Figure 1.1). The latter, also known as N-heterocycUc carbenes (NHC), should actually be named after three people Ofele [2] and Wanzlick [3], who independently synthesised their first transition metal complexes in 1968, and Arduengo [1] who reported the first free and stable NHC in 1991. Fischer carbene complexes have an electrophilic carbene carbon atom [32] that can be attacked by a Lewis base. The Schrock carbene complex has a reversed reactivity. The Schrock carbene complex is usually employed in olefin metathesis (Grubbs catalyst) or as an alternative to phosphorus ylides in the Wittig reaction [33]. [Pg.7]

A stepwise twofold electrophilic attack occurs on the carbyne complex 229 to first give the cationic t/ -carbene complex 230 and then the dica-tionic dithiatungstabicyclo[ 1.1,0]butene complex 231 156). A similar tf-carbene ligand forms in the reaction of the thiocarbyne complex [W(CO)2(CSMe) HB(pz)3)] (232) with Me2(MeS)S+(757). [Pg.49]

The reaction between the thiocarbene complex 413 and (Cp3)2C=NC(0)R (R = Ph, P-FQH4) leads to scission of the carbene ligand and transfer of the nucleophilic SMe fragment to the electrophilic center of the acylamine. Protonation, effected either by the rest of the carbene or the solvent, results in a thioether derivative (414) (249). [Pg.80]


See other pages where Electrophiles carbene ligand is mentioned: [Pg.238]    [Pg.236]    [Pg.278]    [Pg.238]    [Pg.236]    [Pg.278]    [Pg.7]    [Pg.368]    [Pg.184]    [Pg.125]    [Pg.127]    [Pg.138]    [Pg.169]    [Pg.175]    [Pg.9]    [Pg.342]    [Pg.179]    [Pg.155]    [Pg.50]    [Pg.60]    [Pg.240]    [Pg.101]    [Pg.101]    [Pg.107]    [Pg.2919]    [Pg.1109]    [Pg.247]    [Pg.401]    [Pg.425]    [Pg.9]    [Pg.1109]   
See also in sourсe #XX -- [ Pg.90 ]




SEARCH



Carbene electrophile

Carbenes electrophilicity

Carbenes ligands

Electrophiles carbenes

Electrophilic carbene

Electrophilic carbenes

© 2024 chempedia.info