Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic properties, layer

Cathodoluminescence microscopy and spectroscopy techniques are powerful tools for analyzing the spatial uniformity of stresses in mismatched heterostructures, such as GaAs/Si and GaAs/InP. The stresses in such systems are due to the difference in thermal expansion coefficients between the epitaxial layer and the substrate. The presence of stress in the epitaxial layer leads to the modification of the band structure, and thus affects its electronic properties it also can cause the migration of dislocations, which may lead to the degradation of optoelectronic devices based on such mismatched heterostructures. This application employs low-temperature (preferably liquid-helium) CL microscopy and spectroscopy in conjunction with the known behavior of the optical transitions in the presence of stress to analyze the spatial uniformity of stress in GaAs epitaxial layers. This analysis can reveal,... [Pg.156]

Of particular importance to carbon nanotube physics are the many possible symmetries or geometries that can be realized on a cylindrical surface in carbon nanotubes without the introduction of strain. For ID systems on a cylindrical surface, translational symmetry with a screw axis could affect the electronic structure and related properties. The exotic electronic properties of ID carbon nanotubes are seen to arise predominately from intralayer interactions, rather than from interlayer interactions between multilayers within a single carbon nanotube or between two different nanotubes. Since the symmetry of a single nanotube is essential for understanding the basic physics of carbon nanotubes, most of this article focuses on the symmetry properties of single layer nanotubes, with a brief discussion also provided for two-layer nanotubes and an ordered array of similar nanotubes. [Pg.27]

A photovoltaic cell (often called a solar cell) consists of layers of semiconductor materials with different electronic properties. In most of today s solar cells the semiconductor is silicon, an abundant element in the earth s crust. By doping (i.e., chemically introducing impurity elements) most of the silicon with boron to give it a positive or p-type electrical character, and doping a thin layer on the front of the cell with phosphorus to give it a negative or n-type character, a transition region between the two types... [Pg.1058]

It would be preferable to incorporate both fluorescent and electron transport properties in the same material so as to dispense entirely with the need for electron-transport layers in LEDs. Raising the affinity of the polymer facilitates the use of metal electrodes other than calcium, thus avoiding the need to encapsulate the cathode. It has been shown computationally [76] that the presence of a cyano substituent on the aromatic ring or on the vinylene portion of PPV lowers both the HOMO and LUMO of the material. The barrier for electron injection in the material is lowered considerably as a result. However, the Wessling route is incompatible with strongly electron-withdrawing substituents, and an alternative synthetic route to this class of materials must be employed. The Knoevenagel condensation... [Pg.20]

Polymer LEDs are similar to thin film organic molecular LEDs first reported in 1987 17). Organic molecular LEDs utilize thin films of small organic molecules rather than polymer films as the light-emitting layer. The films of small organic molecules are undoped and have electronic properties comparable to the polymer films used in polymer LEDs. In general, the device physics of polymer LEDs is... [Pg.180]

Another approach to molecular assembly involves siloxane chemistry [61]. In this method, the electrically or optically active oligomers are terminated with tii-chlorosilane. Layers are built up by successive cycles of dip, rinse, and cure to form hole transport, emissive, and electron transport layers of the desired thicknesses. Similar methods have also been used to deposit just a molecular monolayer on the electrode surface, in order to modify its injection properties. [Pg.223]

This chapter is organized as follows in Section 11.2 the relevant properties of electroluminescent polymer Films are summarized in Section 11.3 the electronic properties of mctal/polymer junctions are described in Section 11.4 single layer polymer LEDs are discussed in Section 11.5 multi-layer polymer LEDs are considered and Section 11.6 summarizes the conclusions. [Pg.493]

This allows a direct influence of the alloying component on the electronic properties of these unique Pt near-surface formations from subsurface layers, which is the crucial difference in these materials. In addition, the electronic and geometric structures of skin and skeleton were found to be different for example, the skin surface is smoother and the band center position with respect to the metallic Fermi level is downshifted for skin surfaces (Fig. 8.12) [Stamenkovic et al., 2006a] owing to the higher content of non-Pt atoms in the second layer. On both types of surface, the relationship between the specific activity for the oxygen reduction reaction (ORR) and the tf-band center position exhibits a volcano-shape, with the maximum... [Pg.259]

Metal alkyls can be prepared in a simple manner from the main group halides (X = Cl, Br, I) and the appropriate alkyl Grignard reagent (RMgl) or the alkyllithium salt (RLi), as shown for the cadmium alkyls (Equation (2)).13 The elimination of impurities from the precursor source is of great importance, as any remaining impurities are invariably carried over into the growing semiconductor layers. Incorporation of impurities, even at levels as low as 1015 free carriers per cubic centimeter (one part in ca. 107), can drastically affect the electronic properties of the... [Pg.1012]


See other pages where Electronic properties, layer is mentioned: [Pg.301]    [Pg.1889]    [Pg.2861]    [Pg.130]    [Pg.44]    [Pg.192]    [Pg.129]    [Pg.159]    [Pg.245]    [Pg.148]    [Pg.405]    [Pg.115]    [Pg.77]    [Pg.252]    [Pg.139]    [Pg.239]    [Pg.487]    [Pg.34]    [Pg.167]    [Pg.169]    [Pg.178]    [Pg.184]    [Pg.238]    [Pg.246]    [Pg.246]    [Pg.52]    [Pg.85]    [Pg.86]    [Pg.97]    [Pg.98]    [Pg.495]    [Pg.495]    [Pg.538]    [Pg.114]    [Pg.301]    [Pg.47]    [Pg.315]    [Pg.166]    [Pg.331]    [Pg.239]    [Pg.362]   


SEARCH



Electron layers

Layer properties

© 2024 chempedia.info