Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic perturbation effects

The stereochemistry and reactivity of sulfur ylides with 5-substituted adamantan-2-ones has been reported in different solvents.54 The electronic perturbative effect of substituents was found to depend on the solvent and reactant. [Pg.258]

But similar calculations for the iron-group ions show marked disagreement with experiment, and many attempts were made to explain the discrepancies. The explanation is simple in many condensed systems the perturbing effect of the atoms or molecules surrounding a magnetic atom destroys the contribution of the orbital momentum to the magnetic moment, which is produced entirely by the spin moments of unpaired electrons.40... [Pg.90]

Theoretical analyses (75-77) of the matrix-induced changes in the optical spectra of isolated, noble-metal atoms have also been made. The spectra were studied in Ar, Kr, and Xe, and showed a pronounced, reversible-energy shift of the peaks with temperature. The authors discussed the matrix influence in terms of level shift-differences, as well as spin-orbit coupling and crystal-field effects. They concluded that an increase in the matrix temperature enhances the electronic perturbation of the entrapped atom, in contrast to earlier prejudices that the temperature dilation of the surrounding cage moves the properties of the atomic guest towards those of the free atom. [Pg.96]

In a real biological system, DNA is mostly surrounded by many proteins. Protein binding to DNA involves a number of hydrogen bonds and electrostatic contacts between two biopolymers, and induces not only structural deviation from the typical B-form structure, but also electronic perturbation of the -stacked array of base pairs. We tackled the electronic effects of protein binding on the efficiency of hole transport by using a restriction en-... [Pg.174]

CHD Re (CO) j. are very close to the gas phase positions and the shift (Mn to Re) is almost identical in gas phase and matrix. Thus, V(C-H). in the matrix will provide information on the C-H bond length. On generation of the unstable 1 2 complexes, there is a downward shift in V(C-H). of 11-14 cm implying a bond lengthening of. 0011-.00 X. This is clearly a very sensitive probe of the effect of slight electronic perturbation of the metal centre and is likely to be useful for other systems. [Pg.117]

As usual, the Hartree-Fock model can be corrected with perturbation theory (e.g., the Mpller-Plesset [MP] method29) and/or variational techniques (e.g., the configuration-interaction [Cl] method30) to account for electron-correlation effects. The electron density p(r) = N f P 2 d3 2... d3r can generally be expressed as... [Pg.14]

The use of the Hartree-Fock model allows the perturbation-theory equations (1.2)-(1.5) to be conveniently recast in terms of underlying orbitals (,), orbital energies (e,), and orbital occupancies (n,). Such orbital perturbation equations will allow us to treat the complex electronic interactions of the actual many-electron system (described by Fock operator F) in terms of a simpler non-interacting system (described by unperturbed Fock operator We shall make use of such one-electron perturbation expressions throughout this book to elucidate the origin of chemical bonding effects within the Hartree-Fock model (which can be further refined with post-HF perturbative procedures, if desired). [Pg.16]

In these expressions, n,m> is the number (0,1, or 2) of electrons occupying spatial orbital 0,-(O) in F0), and is a variational trial function (orthogonal to 0,-(O)) for the first-order orbital correction The expressions (1.20) allow us to treat the perturbative effects on an orbital-by-orbital basis, isolating the corrections associated with each HF orbital ,. Equations (1.18)-(1.20) involve only s/ng/e-electron operators and integrations, and are therefore considerably simpler than (1.5c) and (1.5d). [Pg.18]

The effect of external field on reactivity descriptors has been of recent interest. Since the basic reactivity descriptors are derivatives of energy and electron density with respect to the number of electrons, the effect of external field on these descriptors can be understood by the perturbative analysis of energy and electron density with respect to number of electrons and external field. Such an analysis has been done by Senet [22] and Fuentealba [23]. Senet discussed perturbation of these quantities with respect to general local external potential. It can be shown that since p(r) = 8E/8vexl, Fukui function can be seen either as a derivative of chemical potential... [Pg.366]

Topsom, 1976) and to treat them separately. In this review we will be concerned solely with polar or electronic substituent effects. Although it is possible to define a number of different electronic effects (field effects, CT-inductive effects, jt-inductive effects, Jt-field effects, resonance effects), it is customary to use a dual substituent parameter scale, in which one parameter describes the polarity of a substituent and the other the charge transfer (resonance) (Topsom, 1976). In terms of molecular orbital theory, particularly in the form of perturbation theory, this corresponds to a separate evaluation of charge (inductive) and overlap (resonance) effects. This is reflected in the Klopman-Salem theory (Devaquet and Salem, 1969 Klop-man, 1968 Salem, 1968) and in our theory (Sustmann and Binsch, 1971, 1972 Sustmann and Vahrenholt, 1973). A related treatment of substituent effects has been proposed by Godfrey (Duerden and Godfrey, 1980). [Pg.132]

The plan of this paper is as follows - In section 2, the basic experimental data required in the re-evaluation of the empirical correlation energies of the N2 CO, BF and NO molecules are collected. The essential theoretical ingredients of our re-determination are given in section 3 including new fully relativistic calculations including the frequency independent Breit interaction and electron correlation effects described by second order diagrammatic perturbation theory for the Be-like ions B", C, O" ... [Pg.128]

Since electrons are much faster than nuclei, owing to Wg Mj, ions can be considered as fixed and one can thus neglect the //ion-ion contribution (formally Mion-ion Hee, where Vion-ion is a Constant). This hrst approximation, as formulated by N. E. Born and J. R. Oppenheimer, reflects the instantaneous adaptation of electrons to atomic vibrations thus discarding any electron-phonon effects. Electron-phonon interactions can be a-posteriori included as a perturbation of the zero-order Hamiltonian Hq. This is particularly evident in the photoemission spectra of molecules in the gas phase, as already discussed in Section 1.1 for nJ, where the 7T state exhibits several lines separated by a constant quantized energy. [Pg.56]

Btiilding on atomic studies using even-tempered basis sets, universal basis sets and systematic sequences of even-tempered basis sets, recent work has shown that molecular basis sets can be systematically developed until the error associated with basis set truncation is less that some required tolerance. The approach has been applied first to diatomic molecules within the Hartree-Fock formalism[12] [13] [14] [15] [16] [17] where finite difference[18] [19] [20] [21] and finite element[22] [23] [24] [25] calculations provide benchmarks against which the results of finite basis set studies can be measured and then to polyatomic molecules and in calculations which take account of electron correlation effects by means of second order perturbation theory. The basis sets employed in these calculations are even-tempered and distributed, that is they contain functions centred not only on the atomic nuclei but also on the midpoints of the line segments between these nuclei and at other points. Functions centred on the bond centres were found to be very effective in approaching the Hartree-Fock limit but somewhat less effective in recovering correlation effects. [Pg.159]

The photoexdtation process leading to photoemission is a very strong perturbation of the electron system. Therefore, after photoemission, one has to take into account the many-electron relaxation effects that follow. These effects do not permit the cancellation of Pfin which we have performed previously. [Pg.204]


See other pages where Electronic perturbation effects is mentioned: [Pg.265]    [Pg.118]    [Pg.265]    [Pg.118]    [Pg.92]    [Pg.99]    [Pg.165]    [Pg.199]    [Pg.197]    [Pg.85]    [Pg.85]    [Pg.86]    [Pg.86]    [Pg.212]    [Pg.123]    [Pg.326]    [Pg.211]    [Pg.351]    [Pg.355]    [Pg.126]    [Pg.155]    [Pg.247]    [Pg.462]    [Pg.469]    [Pg.256]    [Pg.160]    [Pg.71]    [Pg.194]    [Pg.14]    [Pg.103]    [Pg.105]    [Pg.103]    [Pg.105]    [Pg.218]    [Pg.76]    [Pg.216]   
See also in sourсe #XX -- [ Pg.265 ]




SEARCH



Effective electronic perturbation

Electronic perturbation

Electronic perturbed

© 2024 chempedia.info