Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic Hamiltonian energy dependence

In the Hamiltonian Eq. (3.39) the first term is the harmonic lattice energy given by Eq. (3.12). It depends only on A iU, i.e., the part of the order parameter that describes the lattice distortions. On the other hand, the electron Hamiltonian Hcl depends on A(.v), which includes the changes of the hopping amplitudes due to both the lattice distortion and the disorder. The free electron part of Hel is given by Eq. (3.10), to which we also add a term Hc 1-1-1 that describes the Coulomb interne-... [Pg.367]

Molecular aspects of geometric phase are associated with conical intersections between electronic energy surfaces, W(Q), where Q denotes the set of say k vibrational coordinates. In the simplest two-state case, the W Q) are eigen-surfaces of the nuclear coordinate dependent Hermitian electronic Hamiltonian... [Pg.4]

Tully has discussed how the classical-path method, used originally for gas-phase collisions, can be applied to the study of atom-surface collisions. It is assumed that the motion of the atomic nucleus is associated with an effective potential energy surface and can be treated classically, thus leading to a classical trajectory R(t). The total Hamiltonian for the system can then be reduced to one for electronic motion only, associated with an electronic Hamiltonian Jf(R) = Jf t) which, as indicated, depends parametrically on the nuclear position and through that on time. Therefore, the problem becomes one of solving a time-dependent Schrodinger equation ... [Pg.339]

In general, fluctuations in any electron Hamiltonian terms, due to Brownian motions, can induce relaxation. Fluctuations of anisotropic g, ZFS, or anisotropic A tensors may provide relaxation mechanisms. The g tensor is in fact introduced to describe the interaction energy between the magnetic field and the electron spin, in the presence of spin orbit coupling, which also causes static ZFS in S > 1/2 systems. The A tensor describes the hyperfine coupling of the unpaired electron(s) with the metal nuclear-spin. Stochastic fluctuations can arise from molecular reorientation (with correlation time Tji) and/or from molecular distortions, e.g., due to collisions (with correlation time t ) (18), the latter mechanism being usually dominant. The electron relaxation time is obtained (15) as a function of the squared anisotropies of the tensors and of the correlation time, with a field dependence due to the term x /(l + x ). [Pg.114]

In the case of a scattering resonance, bound-free correlation is modified by a transient bound state of fV+1 electrons. In a finite matrix representation, the projected (fV+l)-electron Hamiltonian H has positive energy eigenvalues, which define possible scattering resonances if they interact sufficiently weakly with the scattering continuum. In resonance theory [270], this transient discrete state is multiplied by an energy-dependent coefficient whose magnitude is determined by that of the channel orbital in the resonant channel. Thus the normalization of the channel orbital establishes the absolute amplitude of the transient discrete state, and arbitrary normalization of the channel orbital cannot lead to an inconsistency. [Pg.158]

Closely inspecting the operator terms entering the electronic Hamiltonian eq. (1.27) one can easily see that they are sums of equivalent contributions dependent on coordinates of one or two electrons only. Analogously in the second quantization formalism only the products of two and four Fermi operators appear in the Hamiltonian. Inserting the trial. Y-electron wave function of the (ground) state into the expression for the electronic energy yields its expectation value in terms of the expectation values of the one- and two-electron operators ... [Pg.68]

One-electron transfers between the subsystems finally contribute to the effective Hamiltonian the following energy dependent term ... [Pg.83]

Even when confining the variation of the trial wavefunction to the LCAO-MO coefficients c U, the respective approximate solution of the Schrodinger equation is still quite complex and may be computationally very demanding. The major reason is that the third term of the electronic Hamiltonian, Hel (Equation 6.12), the electron-electron repulsion, depends on the coordinates of two electrons at a time, and thus cannot be broken down into a sum of one-electron functions. This contrasts with both the kinetic energy and the electron-nucleus attraction, each of which are functions of the coordinates of single electrons (and thus are written as sums of n one-electron terms). At the same time, orbitals are one-electron functions, and molecular orbitals can be more easily generated as eigenfunctions of an operator that can also be separated into one-electron terms. [Pg.101]

For larger molecules it is assumed that a molecular wave function, , is an anti-symmetric product of atomic wave functions, made up by linear combination of single-electron functions, called orbitals. The Hamiltonian operator, H which depends on the known molecular geometry, is readily derived and although eqn. (3.37) is too complicated, even for numerical solution, it is in principle possible to simulate the operation of H on d>. After variational minimization the calculated eigenvalues should correspond to one-electron orbital energies. However, in practice there are simply too many electrons, even in moderately-sized molecules, for this to be a viable procedure. [Pg.123]

P and S. Note that states with different values of /. or. S have different energies, partly because of the electron-electron interaction term in the electronic Hamiltonian. A further symmetry classification that should be mentioned is the parity of an atomic state which depends on the behaviour of the total wave function under space-fixed inversion. This is either even (g) or odd (u) and is determined by, summed over all the electrons in the atom. [Pg.185]


See other pages where Electronic Hamiltonian energy dependence is mentioned: [Pg.32]    [Pg.2317]    [Pg.4]    [Pg.156]    [Pg.400]    [Pg.639]    [Pg.50]    [Pg.140]    [Pg.108]    [Pg.260]    [Pg.417]    [Pg.506]    [Pg.770]    [Pg.239]    [Pg.217]    [Pg.4]    [Pg.269]    [Pg.451]    [Pg.402]    [Pg.183]    [Pg.736]    [Pg.204]    [Pg.204]    [Pg.20]    [Pg.72]    [Pg.97]    [Pg.144]    [Pg.98]    [Pg.248]    [Pg.9]    [Pg.120]    [Pg.19]    [Pg.34]    [Pg.6]    [Pg.35]    [Pg.581]    [Pg.55]    [Pg.13]    [Pg.570]    [Pg.58]   
See also in sourсe #XX -- [ Pg.77 ]




SEARCH



Electron Hamiltonians

Electron dependence

Electronic Hamiltonian

Electronic Hamiltonians

Energy-dependent

Hamiltonian energy-dependent

Hamiltonians electronic Hamiltonian

© 2024 chempedia.info