Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron transfer reduced ions

Hydroxytelechelic polymers can be synthesized via a photoinitiated radical process 49,50 76 77). This reaction resembles that of the redox system because an electron transfer mechanism is operative and the synthesis is carried out in aqueous solution. The reactive species is a complex ion such as Fe3+, X (OH-, Cl-, N". ..). The light absorption (hv) by the ionic species results in an electron transfer reducing the cation oxidation of the anion leads to a free radical X which initiates the polymerization. [Pg.178]

The pale blue tris(2,2 -bipyridine)iron(3+) ion [18661-69-3] [Fe(bipy)2], can be obtained by oxidation of [Fe(bipy)2]. It cannot be prepared directiy from iron(III) salts. Addition of 2,2 -bipyridine to aqueous iron(III) chloride solutions precipitates the doubly hydroxy-bridged species [(bipy)2Fe(. t-OH)2Fe(bipy)2]Cl4 [74930-87-3]. [Fe(bipy)2] has an absorption maximum at 610 nm, an absorptivity of 330 (Mem), and a formation constant of 10. In mildly acidic to alkaline aqueous solutions the ion is reduced to the iron(II) complex. [Fe(bipy)2] is frequentiy used in studies of electron-transfer mechanisms. The triperchlorate salt [15388-50-8] is isolated most commonly. [Pg.440]

Electron-transfer reactions producing triplet excited states can be diagnosed by a substantial increase in luminescence intensity produced by a magnetic field (170). The intensity increases because the magnetic field reduces quenching of the triplet by radical ions (157). [Pg.270]

Reactions involving the peroxodisulfate ion are usually slow at ca 20°C. The peroxodisulfate ion decomposes into free radicals, which are initiators for numerous chain reactions. These radicals act either thermally or by electron transfer with transition-metal ions or reducing agents (79). [Pg.96]

Dicarbocyanine and trie arbo cyanine laser dyes such as stmcture (1) (n = 2 and n = 3, X = oxygen) and stmcture (34) (n = 3) are photoexcited in ethanol solution to produce relatively long-Hved photoisomers (lO " -10 s), and the absorption spectra are shifted to longer wavelength by several tens of nanometers (41,42). In polar media like ethanol, the excited state relaxation times for trie arbo cyanine (34) (n = 3) are independent of the anion, but in less polar solvent (dichloroethane) significant dependence on the anion occurs (43). The carbocyanine from stmcture (34) (n = 1) exists as a tight ion pair with borate anions, represented RB(CgH5 )g, in benzene solution photoexcitation of this dye—anion pair yields a new, transient species, presumably due to intra-ion pair electron transfer from the borate to yield the neutral dye radical (ie, the reduced state of the dye) (44). [Pg.398]

The acetylide anion 3 is likely to form an alkynyl-copper complex by reaction with the cupric salt. By electron transfer the copper-II ion is reduced, while the acetylenic ligands dimerize to yield the -acetylene 2 ... [Pg.136]

The complex cyanides of transition metals, especially the iron group, are very stable in aqueous solution. Their high co-ordination numbers mean the metal core of the complex is effectively shielded, and the metal-cyanide bonds, which share electrons with unfilled inner orbitals of the metal, may have a much more covalent character. Single electron transfer to the ferri-cyanide ion as a whole is easy (reducing it to ferrocyanide, with no alteration of co-ordination), but further reduction does not occur. [Pg.346]

To design a voltaic cell using the Zn-Cu2+ reaction as a source of electrical energy, the electron transfer must occur indirectly that is, the electrons given off by zinc atoms must be made to pass through an external electric circuit before they reduce Cu2+ ions to copper atoms. One way to do this is shown in Figure 18.2. The voltaic cell consists of two half-cells—... [Pg.482]

A salt bridge serves as an ionconducting connection between the two half-cells. When the external circuit is closed, the oxidation reaction starts with the dissolution of the zinc electrode and the formation of zinc ions in half-cell I. In half-cell II copper ions are reduced and metallic copper is deposited. The sulfate ions remain unchanged in the aqueous solution. The overall cell reaction consists of an electron transfer between zinc and copper ions ... [Pg.6]

Several other electron-transfer reagents have been tested with arenediazonium ions, for example, A-benzyl-l,4-dihydronicotinamide, which is a model for biochemical reductions by NAD(P)H, the reduced form of NADP+ (nicotinamide adenine cfinucleotide phosphate) (Yasui et al., 1984). [Pg.195]

The classical syntheses of phenanthrene and fluorenone fit well into the electron transfer scheme discussed in Section 8.6 and in this chapter. The aryl radical is formed by electron transfer from a Cu1 ion, iodide ion, pyridine, hypophosphorous acid, or by electrochemical transfer. The aryl radical attacks the neighboring phenyl ring, and the oxidized electron transfer reagent (e. g., Cu11) reduces the hexadienyl radical to the arenium ion, which is finally deprotonated by the solvent (Scheme 10-76). [Pg.263]

The reduction ofsec-, and /-butyl bromide, of tnins-1,2-dibromocyclohexane and other vicinal dibromides by low oxidation state iron porphyrins has been used as a mechanistic probe for investigating specific details of electron transfer I .v. 5n2 mechanisms, redox catalysis v.v chemical catalysis and inner sphere v.v outer sphere electron transfer processes7 The reaction of reduced iron porphyrins with alkyl-containing supporting electrolytes used in electrochemistry has also been observed, in which the electrolyte (tetraalkyl ammonium ions) can act as the source of the R group in electrogenerated Fe(Por)R. ... [Pg.248]

As the cation becomes progressively more reluctant to be reduced than [53 ], covalent bond formation is observed instead of electron transfer. Further stabilization of the cation causes formation of an ionic bond, i.e. salt formation. Thus, the course of the reaction is controlled by the electron affinity of the carbocation. However, the change from single-electron transfer to salt formation is not straightforward. As has been discussed in previous sections, steric effects are another important factor in controlling the formation of hydrocarbon salts. The significant difference in the reduction potential at which a covalent bond is switched to an ionic one -around -0.8 V for tropylium ion series and —1.6 V in the case of l-aryl-2,3-dicyclopropylcyclopropenylium ion series - may be attributed to steric factors. [Pg.216]

The oxidation of Zn metai by Cu ions is an exampie of direct electron transfer. A copper ion accepts two eiectrons when it coiiides with the surface of the zinc strip. Direct electron transfer occurs when electrons are transferred during a coiiision between the species being oxidized and the species being reduced, as shown by the moiecuiar views in Figure 19-5. [Pg.1370]

To decide whether the reaction involves 1- or 2-electron transfers, i.e. chromium-(rv) or chromium(V) is formed first, the induced oxidation of manganese(II) was investigated. When sodium perchlorate was used to maintain a constant ionic strength, the rate of oxidation of benzaldehyde dropped to one-half of the original rate in the presence of manganese(II) ions. On the contrary, when magnesium perchlorate was used as the neutral salt, the rate was reduced to of its original value. This peculiar observation, however, has not been interpreted. [Pg.530]

It seems that Au ions of Au(OH) Cl4 complex, formed by the first aging at room temperature, are reduced to Au particles by electron transfer from the coordinated OH ions on the surface of hematite as a catalyst of the electron transfer. As a consequence, the essential reducing agent is water. The optimum pH to yield the maximum quantity of Au particles was ca. pH 5.9, as measured at room temperature, corresponding to the pH of the above standard system. Au ions are reduced to metallic Au by electron transfer from coordinated OH ions on the surfaces of hematite particles through their catalytic action. [Pg.393]


See other pages where Electron transfer reduced ions is mentioned: [Pg.516]    [Pg.457]    [Pg.180]    [Pg.143]    [Pg.485]    [Pg.106]    [Pg.371]    [Pg.54]    [Pg.93]    [Pg.440]    [Pg.136]    [Pg.1020]    [Pg.1188]    [Pg.18]    [Pg.339]    [Pg.737]    [Pg.382]    [Pg.865]    [Pg.104]    [Pg.190]    [Pg.193]    [Pg.196]    [Pg.231]    [Pg.162]    [Pg.14]    [Pg.15]    [Pg.10]    [Pg.1353]    [Pg.72]    [Pg.84]    [Pg.211]    [Pg.452]    [Pg.654]    [Pg.667]    [Pg.421]   
See also in sourсe #XX -- [ Pg.177 ]




SEARCH



Ion transfer

Ion transference

© 2024 chempedia.info