Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron-transfer oxidation chain process

The ready reversibility of this reaction is essential to the role that qumones play in cellular respiration the process by which an organism uses molecular oxygen to convert Its food to carbon dioxide water and energy Electrons are not transferred directly from the substrate molecule to oxygen but instead are transferred by way of an electron trans port chain involving a succession of oxidation-reduction reactions A key component of this electron transport chain is the substance known as ubiquinone or coenzyme Q... [Pg.1013]

Apparently the alkoxy radical, R O , abstracts a hydrogen from the substrate, H, and the resulting radical, R" , is oxidized by Cu " (one-electron transfer) to form a carbonium ion that reacts with the carboxylate ion, RCO - The overall process is a chain reaction in which copper ion cycles between + 1 and +2 oxidation states. Suitable substrates include olefins, alcohols, mercaptans, ethers, dienes, sulfides, amines, amides, and various active methylene compounds (44). This reaction can also be used with tert-huty peroxycarbamates to introduce carbamoyloxy groups to these substrates (243). [Pg.131]

This oxidative process has been successful with ketones,244 esters,245 and lactones.246 Hydrogen peroxide can also be used as the oxidant, in which case the alcohol is formed directly.247 The mechanisms for the oxidation of enolates by oxygen is a radical chain autoxidation in which the propagation step involves electron transfer from the carbanion to a hydroperoxy radical.248... [Pg.1140]

P. Mitchell (Nobel Prize for Chemistry, 1978) explained these facts by his chemiosmotic theory. This theory is based on the ordering of successive oxidation processes into reaction sequences called loops. Each loop consists of two basic processes, one of which is oriented in the direction away from the matrix surface of the internal membrane into the intracristal space and connected with the transfer of electrons together with protons. The second process is oriented in the opposite direction and is connected with the transfer of electrons alone. Figure 6.27 depicts the first Mitchell loop, whose first step involves reduction of NAD+ (the oxidized form of nicotinamide adenosine dinucleotide) by the carbonaceous substrate, SH2. In this process, two electrons and two protons are transferred from the matrix space. The protons are accumulated in the intracristal space, while electrons are transferred in the opposite direction by the reduction of the oxidized form of the Fe-S protein. This reduces a further component of the electron transport chain on the matrix side of the membrane and the process is repeated. The final process is the reduction of molecular oxygen with the reduced form of cytochrome oxidase. It would appear that this reaction sequence includes not only loops but also a proton pump, i.e. an enzymatic system that can employ the energy of the redox step in the electron transfer chain for translocation of protons from the matrix space into the intracristal space. [Pg.477]

Fig. 5.7. In green sulfur bacteria and in some archaebacteria, a reverse citric acid cycle is used for the assimilation of C02. It must be assumed that this was the original function of the citric acid cycle that only secondarily took over the role as a dissimulatory and oxidative process for the degradation of organic matter. A major enzyme here is 2-oxoglutarate ferredoxin for C02 fixation. Note that it, like several other enzymes in the cycle, uses Fe/S proteins. One is the initial so-called complex I which has eight different Fe/S centres of different kinds but no haem (see also other early electron-transfer chains, e.g. in hydrogenases). Fig. 5.7. In green sulfur bacteria and in some archaebacteria, a reverse citric acid cycle is used for the assimilation of C02. It must be assumed that this was the original function of the citric acid cycle that only secondarily took over the role as a dissimulatory and oxidative process for the degradation of organic matter. A major enzyme here is 2-oxoglutarate ferredoxin for C02 fixation. Note that it, like several other enzymes in the cycle, uses Fe/S proteins. One is the initial so-called complex I which has eight different Fe/S centres of different kinds but no haem (see also other early electron-transfer chains, e.g. in hydrogenases).
The very fact that the A-to-D conversion is a downhill process implies that a chain reaction may take place in the solution, in parallel to the electrode process (Scheme 2.12). After initiation by an electron (or a hole) coming from the electrode, the propagation loop involves the conversion of B into C and the oxidation of the latter by A. When > c, the solution electron transfer is a downhill reaction, whereas for , B < , c, it is an uphill reaction. It may, nevertheless, interfere in the latter case since the entire process is pulled by the B/C reaction. As sketched in Scheme 2.10, the interference of the solution electron transfer is more important for slower B/C conversion. More precisely, the factor governing the interference of the solution electron transfer is the same as in the ECE-DISP problem discussed in Section 2.2.4 (kecPA/ (Fv/ R-T)1/2. Apparently, disconcerting phenomena take place upon interference of the solution electron transfer, such as dips in the current-potential trace when (Figure 2.25a ) and trace crossing... [Pg.121]

The overall process performance, as measured by photon efficiency (number of incident photon per molecule reacted, like the incident photon to current conversion efficiency, or IPCE, for PV cells), depends on the chain from the light absorption to acceptor/donor reduction/oxidation, and results from the relative kinetic of the recombination processes and interfacial electron transfer [23, 28]. Essentially, control over the rate of carrier crossing the interface, relative to the rates at which carriers recombine, is fundamental in obtaining the control over the efficiency of a photocatalyst. To suppress bulk- and surface-mediated recombination processes an efficient separation mechanism of the photogenerated carrier should be active. [Pg.357]

The electron-transfer chain (ETC) catalytic process (or, electrocatalysis) is the catalysis of a reaction triggered by electrons (through a minimal quantity of an oxidizing or reducing agent) without the occurrence of an overall change in the oxidation state of the reagent. [Pg.96]

Triplet decay in the [Mg, Fe " (H20)] and [Zn, Fe (H20)] hybrids monitored at 415 nm, the Fe " / P isosbestic point, or at 475 nm, where contributions from the charge-separated intermediate are minimal, remains exponential, but the decay rate is increased to kp = 55(5) s for M = Mg and kp = 138(7) s for M = Zn. Two quenching processes in addition to the intrinsic decay process (k ) can contribute to deactivation of MP when the iron containing-chain of the hybrid is oxidized to the Fe P state electron transfer quenching as in Eq. (1) (rate constant kj, and Forster energy transfer (rate constant kj. The triplet decay in oxidized hybrids thus is characterized by kp, the net rate of triplet disappearance (kp = k -I- ki -I- kj. The difference in triplet decay rate constants for the oxidized and reduced hybrids gives the quenching rate constant, k = kp — kj, = k, -I- k , which is thus an upper bound to k(. [Pg.89]

PANI is usually produced by the anodic oxidation of aniline in acidic aqueous solution [5, 139], but can also be produced by chemical oxidation [138b, 140]. Hence, it is not surprising that the oxidation of PANI is pH-dependent and that, therefore, in addition to electron-transfer processes, proton-transfer reactions occur during charging. Although it is usually assumed that PANI has a chain structure (emeraldine) with head-tail connections... [Pg.635]


See other pages where Electron-transfer oxidation chain process is mentioned: [Pg.73]    [Pg.73]    [Pg.110]    [Pg.56]    [Pg.576]    [Pg.1196]    [Pg.297]    [Pg.285]    [Pg.237]    [Pg.887]    [Pg.261]    [Pg.718]    [Pg.237]    [Pg.113]    [Pg.7]    [Pg.28]    [Pg.247]    [Pg.585]    [Pg.641]    [Pg.19]    [Pg.562]    [Pg.257]    [Pg.264]    [Pg.167]    [Pg.135]    [Pg.188]    [Pg.86]    [Pg.87]    [Pg.388]    [Pg.430]    [Pg.235]    [Pg.206]    [Pg.209]    [Pg.302]    [Pg.242]    [Pg.6]   
See also in sourсe #XX -- [ Pg.860 ]

See also in sourсe #XX -- [ Pg.860 ]

See also in sourсe #XX -- [ Pg.7 ]

See also in sourсe #XX -- [ Pg.7 ]

See also in sourсe #XX -- [ Pg.860 ]




SEARCH



Chain oxidation

Chain process

Chain transfer process

Electron Oxidants

Electron chain

Electron processes

Electron transfer chain

Electron transfer, oxides

Electron-transfer processes

Electronic oxides

Electronic processes

Electrons oxidation

Oxidation transfer

Oxidative electron transfer

© 2024 chempedia.info