Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron transfer microscopic theory

Chemical and electrochemical reactions in condensed phases are generally quite complex processes only outer-sphere electron-transfer reactions are sufficiently simple that we have reached a fair understanding of them in terms of microscopic concepts. In this chapter we give a simple derivation of a semiclassical theory of outer-sphere electron-transfer reactions, which was first systematically developed by Marcus [1] and Hush [2] in a series of papers. A more advanced treatment will be presented in Chapter 19. [Pg.67]

Marcus theory is based on certain assumptions that will be discussed later. The main goal of computer simulations of electron transfer is to check some of these assumptions and to provide additional microscopic insight into the mechanism of electron transfer and the microscopic factors that influence the rate of transfer. We discuss these issues in the following section for the simple case of outer-sphere electron transfer reactions. [Pg.156]

The mechanism by which equilibrium is attained can only be visualized in terms of microscopic theories. In the kinetic sense, equilibrium is reached in a gas when collisions among molecules redistribute the velocilies lor kinetic energies) of each molecule until a Maxwellian distribution is reached for the whole bulk. In the case of the trend toward equilibrium for two solid bodies brought into physical contact, we visualize the transfer of energy by means of free electrons and phonons (lattice vibrations). [Pg.581]

A microscopic theory for describing ultrafast radiationless transitions in particular for, photo-induced ultrafast radiationless transitions is presented. For this purpose, one example system that well represents the ultrafast radiationless transaction problem is considered. More specifically, bacterial photosynthetic reaction centers (RCs) are investigated for their ultrafast electronic-excitation energy transfer (EET) processes and ultrafast electron transfer (ET) processes. Several applications of the density matrix method are presented for emphasizing that the density matrix method can not only treat the dynamics due to the radiationless transitions but also deal with the population and coherence dynamics. Several rate constants of the radiationless transitions and the analytic estimation methods of those rate... [Pg.183]

The theory for this intermolecular electron transfer reaction can be approached on a microscopic quantum mechanical level, as suggested above, based on a molecular orbital (filled and virtual) approach for both donor (solute) and acceptor (solvent) molecules. If the two sets of molecular orbitals can be in resonance and can physically overlap for a given cluster geometry, then the electron transfer is relatively efficient. In the cases discussed above, a barrier to electron transfer clearly exists, but the overall reaction in certainly exothermic. The barrier must be coupled to a nuclear motion and, thus, Franck-Condon factors for the electron transfer process must be small. This interaction should be modeled by Marcus inverted region electron transfer theory and is well described in the literature (Closs and Miller 1988 Kang et al. 1990 Kim and Hynes 1990a,b Marcus and Sutin 1985 McLendon 1988 Minaga et al. 1991 Sutin 1986). [Pg.187]

It was recently shown (Ratner and Levine, 1980) that the Marcus cross-relation (62) can be derived rigorously for the case that / = 1 by a thermodynamic treatment without postulating any microscopic model of the activation process. The only assumptions made were (1) the activation process for each species is independent of its reaction partner, and (2) the activated states of the participating species (A, [A-], B and [B ]+) are the same for the self-exchange reactions and for the cross reaction. Note that the following assumptions need not be made (3) applicability of the Franck-Condon principle, (4) validity of the transition-state theory, (5) parabolic potential energy curves, (6) solvent as a dielectric continuum and (7) electron transfer is... [Pg.105]

The approach used to obtain the EVB free-energy functionals (the Ag of Equation (7)) has been originally developed in Ref. 25 in order to provide the microscopic equivalent of the Marcus theory for electron transfer (ET) reactions.38 This approach allows one to explore the validity of the Marcus formula and the underlying linear response approximation (LRA) on a microscopic molecular level.39 While this point is now widely accepted by the ET community,40 the validity of the EVB as perhaps the most general tool in microscopic LFER studies is less appreciated. This issue will be addressed below. [Pg.269]

The previous sections dealt with a generalized theory of heterogeneous electron-transfer kinetics based on macroscopic concepts, in which the rate of the reaction was expressed in terms of the phenomenological parameters, and a. While useful in helping to organize the results of experimental studies and in providing information about reaction mechanisms, such an approach cannot be employed to predict how the kinetics are affected by such factors as the nature and structure of the reacting species, the solvent, the electrode material, and adsorbed layers on the electrode. To obtain such information, one needs a microscopic theory that describes how molecular structure and environment affect the electron-transfer process. [Pg.115]

A second important aspect of most microscopic theories of electron transfer is the assumption that the reactants and products do not change their configurations during the actual act of transfer. This idea is based essentially on the Franck-Condon principle, which says, in part, that nuclear momenta and positions do not change on the time scale of electronic transitions. Thus, the reactant and product, O and R, share a common nuclear configuration at the moment of transfer. [Pg.117]

This review is organized to cover the basic features of simple electron transfer reactions. The first three sections develop background material on the thermodynamics, kinetics, and microscopic theory of electron transfer reactions. More general, semiquantitative treatments of these topics are presented, with the objective of introducing the conceptual approaches used to characterize electron transfer processes. The fourth section describes experimental studies on two electron transfer systems, selected from both physiological and nonphysiological... [Pg.38]

We conclude this article on a note of optimistic speculation. Clearly the above results on solvated electrons establish the potential of ultrashort laser pulses to probe the fundamental details of the dynamics of electron transfer reactions, which will be the cornerstone for the development of microscopic theories of electron dynamics in the condensed phase. Electrons are ubiquitous species, and the practical reflection of this appears in research areas such as photosynthesis, dielectric breakdown, fast optical... [Pg.568]

Unlike the original Marcus theory, which uses the continuum model for solvent, the method described above can provide a microscopic picture for the solvent fluctuation. It will be of great interest to explore the chemistry of the electron transfer reaction, including the specific dependence of the rate constant on the variety of solute and solvent. [Pg.37]

At the microscopic level, polaron hopping can be viewed as a self-exchange electron-transfer reaction where a charge hops from an ionized oligomer or chain segment to an adjacent neutral unit. In the framework of semiclassical Marcus theory, the electron-transfer rate is written as... [Pg.24]


See other pages where Electron transfer microscopic theory is mentioned: [Pg.334]    [Pg.50]    [Pg.349]    [Pg.148]    [Pg.51]    [Pg.156]    [Pg.222]    [Pg.98]    [Pg.429]    [Pg.34]    [Pg.257]    [Pg.1]    [Pg.174]    [Pg.253]    [Pg.259]    [Pg.3621]    [Pg.226]    [Pg.219]    [Pg.220]    [Pg.586]    [Pg.197]    [Pg.198]    [Pg.222]    [Pg.250]    [Pg.37]    [Pg.64]    [Pg.563]    [Pg.65]    [Pg.118]    [Pg.589]   
See also in sourсe #XX -- [ Pg.64 , Pg.65 , Pg.66 , Pg.67 , Pg.68 , Pg.69 , Pg.70 , Pg.71 , Pg.72 , Pg.73 , Pg.74 ]




SEARCH



Electron microscop

Electron microscope

Electron microscopic

Electron transfer theory

Microscopes electron microscope

Theory transfer

© 2024 chempedia.info