Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron transfer, activation control outer sphere

Steric Control of the Inner/Outer-Sphere Electron Transfer 461 Thermal and Photochemical ET in Strongly Coupled CT Complexes 463 Electron-Transfer Paradigm for Arene Transformation via CT Complexes 465 Electron-Transfer Activation of Electrophilic Aromatic Substitution 469 Structural Pre-organization of the Reactants in CT Complexes 470 CT Complexes in Aromatic Nitration and Nitrosation 472 Concluding Summary 475 References 475... [Pg.631]

It has been shown so far that internal and external factors can be combined in the control of the electron-transfer rate. Although in most cases a simple theoretical treatment, e.g. by the Marcus approach, is prevented by the coincidence of these factors, it is clear that the observed features for the isoenergetic self-exchange differ by the electronic coupling and the free energy of activation. Then it is also difficult to separate the inner- and outer-sphere reorganization energies. [Pg.36]

Only in a limited number of instances will the value of k and its associated parameters be useful in diagnosing mechanism. When the redox rate is faster than substitution within either reactant, we can be fairly certain that an outer-sphere mechanism holds. This is the case with Fe + and RuCP+ oxidation of V(II) and with rapid electron transfer between inert partners. On the other hand, when the activation parameters for substitution and redox reactions of one of the reactants are similar, an inner-sphere redox reaction, controlled by replacement, is highly likely. This appears to be the case with the oxidation by a number of Co(III) complexes of V(II), confirmed in some instanees by the appearance of the requisite V(III) complex, e.g. [Pg.262]

The proximity of the diffusion limit also inhibits a detailed discussion of the data in Table 7, but a significant difference to the substituent effects discussed in Section III.D.4 is obvious. Whereas the reactivities of terminal alkenes, dienes, and styrenes toward AnPhCH correlate with the stabilities of the new carbenium ions and not with the ionization potentials of the 7r-nucleophiles [69], the situation is different for the reactions of enol ethers with (p-ClC6H4)2CH+ [136]. In this reaction series, methyl groups at the position of electrophilic attack activate the enol ether double bonds more than methyl groups at the new carbocationic center, i.e., the relative activation free enthalpies are not controlled any longer by the stabilities of the intermediate carbocations but by the ionization potentials of the enol ethers (Fig. 20). An interpretation of the correlation in Fig. 20 has not yet been given, but one can alternatively discuss early transition states which are controlled by frontier orbital interactions or the involvement of outer sphere electron transfer processes [220]. [Pg.120]

The homogeneous outer sphere electron transfer reactions in solution occur at a rate that is noticeably Icj er than the diffusion rate. This peculiar behaviour has been explained through a three-step mechanism formation of a precursor complex from the separated reactants, actual electron transfer within this complex to form a successor complex and dissociation of the latter complex into separated products. The reaction rate is usually controlled by the electron transfer step, this step being governed by the Franck-Condon principle. This principle is embodied in classical electron transfer theories using an activated-complex formalism in which the electron transfer occurs at the intersection of two potential energy surfaces, one for the reactants and the other for the products. This implies that the second step necessarily involves the reorganization of the solvent before and after the electron transfer itself is produced. So, it is obvious that solvent must play an essential role in the rate of electron transfer reactions in solution. [Pg.197]


See other pages where Electron transfer, activation control outer sphere is mentioned: [Pg.83]    [Pg.139]    [Pg.186]    [Pg.150]    [Pg.65]    [Pg.33]    [Pg.67]    [Pg.288]    [Pg.438]    [Pg.47]    [Pg.33]    [Pg.67]    [Pg.262]    [Pg.1785]    [Pg.430]    [Pg.223]    [Pg.224]    [Pg.201]    [Pg.202]    [Pg.52]    [Pg.137]    [Pg.150]    [Pg.7]    [Pg.233]    [Pg.520]    [Pg.418]    [Pg.430]    [Pg.75]   
See also in sourсe #XX -- [ Pg.5 , Pg.19 ]




SEARCH



Activation control

Activation electronic

Active controls

Controller electronic controllers

Controlling activities

Controls electronic

Electron activation

Electron transfer control

Electron transfer, activation control

Electronic controllers

Electrons active

Outer sphere

Outer sphere electron

Outer-sphere electron transfer

Sphere Electron Transfer

Transfer Control

© 2024 chempedia.info