Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron through-chain

FIGURE 20.1 Pyruvate produced hi glycolysis is oxidized in the tricarboxylic acid (TCA) cycle. Electrons liberated in this oxidation flow through the electron transport chain and drive the synthesis of ATP in oxidative phosphorylation. In eukaryotic cells, this overall process occurs in mitochondria. [Pg.640]

As its name implies, the citric acid cycle is a closed loop of reactions in which the product of the hnal step (oxaloacetate) is a reactant in the first step. The intermediates are constantly regenerated and flow continuously through the cycle, which operates as long as the oxidizing coenzymes NAD+ and FAD are available. To meet this condition, the reduced coenzymes NADH and FADH2 must be reoxidized via the electron-transport chain, which in turn relies on oxygen as the ultimate electron acceptor. Thus, the cycle is dependent on the availability of oxygen and on the operation of the electron-transport chain. [Pg.1154]

Although only two protons are pumped out of the matrix, two others from the matrix are consumed in the formation of H2O. There is therefore a net translocation of four positive charges out of the matrix which is equivalent to the extrusion of four protons. If four protons are required by the chemiosmotic mechanism to convert cytosolic ADP + Pj to ATP, then 0.5 mol ATP is made for the oxidation of one mol of ubiquinol and one mol ATP for the oxidation of 2 mols of reduced cytochrome c. These stoichiometries were obtained experimentally when ubiquinol was oxidized when complexes I, II, and IV were inhibited by rotenone, malonate, and cyanide, respectively, and when reduced cytochrome c was oxidized with complex III inhibited by antimycin (Hinkle et al., 1991). (In these experiments, of course, no protons were liberated in the matrix by substrate oxidation.) However, in the scheme illustrated in Figure 6, with the flow of two electrons through the complete electron transport chain from substrate to oxygen, it also appears valid to say that four protons are extmded by complex I, four by complex III, and two by complex 1. [Pg.151]

NDO can be classified as class III dioxygenase the electron transfer chain involves a Rieske-type ferredoxin. Electrons enter NDO through the Rieske-type cluster of the dioxygenase. Kauppi et al. (11) have suggested that the binding site of NDO for the ferredoxin involves the 6 strands 10 and 12 of the Rieske domain as well as residues from the catalytic domain that form a depression in the protein surface close to Cys 101, which is a ligand of the Rieske cluster. In Rieske proteins from be complexes, access to this side of the cluster is blocked by an acidic surface residue (Asp 152 in the ISF, Glu 120 in RFS). [Pg.150]

Recent work has shown that bacteria, in common with chloroplasts and mitochondria, are able, through the membrane-bound electron transport chain aerobically, or the membrane-bound adenosine triphosphate (ATP) anerobically, to maintain a gradient of electrical potential and pH such that the interior of the bacterial cell is negahve and alkaline. This potential gradient and the electrical equivalent of the pH difference (1 pH unit = 58 mV at 37°C) give a potential difference across the membrane of 100-180 mV, with the inside negative. The membrane is impermeable to protons, whose extmsion creates the potential described. [Pg.257]

The energy obtained by oxidation of the substrate with oxygen through the electron transport chain is thus accumulated as a difference in the electrochemical potential for H+ between the intracristal and matrix spaces. [Pg.477]

Fig. 5.2. The photosynthetic membrane of a green sulfur bacterium. The light-activated bacte-riochlorophyll molecule sends an electron through the electron-transport chain (as in respiration) creating a proton gradient and ATP synthesis. The electron eventually returns to the bacteri-ochlorophyll (cyclic photophosphorylation). If electrons are needed for C02 reduction (via reduction of NADP+), an external electron donor is required (sulfide that is oxidised to elemental sulfur). Note the use of Mg and Fe. Fig. 5.2. The photosynthetic membrane of a green sulfur bacterium. The light-activated bacte-riochlorophyll molecule sends an electron through the electron-transport chain (as in respiration) creating a proton gradient and ATP synthesis. The electron eventually returns to the bacteri-ochlorophyll (cyclic photophosphorylation). If electrons are needed for C02 reduction (via reduction of NADP+), an external electron donor is required (sulfide that is oxidised to elemental sulfur). Note the use of Mg and Fe.
These results were interpreted using the electron pool hypothesis There is an electron pool situated in the linear photosynthetic electron transport chain between photosystems II and I (Fig. 9). A phobic response is triggered by a decrease in the flow rate through the pool. This can be accomplished in two ways ... [Pg.128]

In plants, the photosynthesis reaction takes place in specialized organelles termed chloroplasts. The chloroplasts are bounded in a two-membrane envelope with an additional third internal membrane called thylakoid membrane. This thylakoid membrane is a highly folded structure, which encloses a distinct compartment called thylakoid lumen. The chlorophyll found in chloroplasts is bound to the protein in the thylakoid membrane. The major photosensitive molecules in plants are the chlorophylls chlorophyll a and chlorophyll b. They are coupled through electron transfer chains to other molecules that act as electron carriers. Structures of chlorophyll a, chlorophyll b, and pheophytin a are shown in Figure 7.9. [Pg.257]

The microbes use two general strategies to synthesize ATP respiration and fermentation. A respiring microbe captures the energy released when electrons are transferred from a reduced species in the environment to an oxidized species (Fig. 18.1). The reduced species, the electron donor, sorbs to a complex of redox enzymes, or a series of such complexes, located in the cell membrane. The complex strips from the donor one or more electrons, which cascade through a series of enzymes and coenzymes that make up the electron transport chain to a terminal enzyme complex, also within the cell membrane. [Pg.258]

Schuman et al. have synthesized ferrocene-modified glucose oxidase with the ferrocene derivatives bound via long and flexible chains directly to the outer surface of the enzyme [17]. A peripherally attached redox mediator may accept electrons through either an intramolecular or through an intermo-lecular process. [Pg.349]


See other pages where Electron through-chain is mentioned: [Pg.5116]    [Pg.5116]    [Pg.293]    [Pg.241]    [Pg.639]    [Pg.652]    [Pg.654]    [Pg.674]    [Pg.700]    [Pg.702]    [Pg.56]    [Pg.130]    [Pg.212]    [Pg.141]    [Pg.307]    [Pg.35]    [Pg.168]    [Pg.172]    [Pg.42]    [Pg.41]    [Pg.585]    [Pg.90]    [Pg.78]    [Pg.135]    [Pg.259]    [Pg.264]    [Pg.243]    [Pg.189]    [Pg.182]    [Pg.10]    [Pg.52]    [Pg.64]    [Pg.64]    [Pg.77]    [Pg.288]    [Pg.381]    [Pg.110]    [Pg.110]    [Pg.258]    [Pg.907]    [Pg.86]   
See also in sourсe #XX -- [ Pg.555 , Pg.560 ]




SEARCH



Electron chain

Through-chain

© 2024 chempedia.info