Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron photoisomerization

Many of the fiindamental physical and chemical processes at surfaces and interfaces occur on extremely fast time scales. For example, atomic and molecular motions take place on time scales as short as 100 fs, while surface electronic states may have lifetimes as short as 10 fs. With the dramatic recent advances in laser tecluiology, however, such time scales have become increasingly accessible. Surface nonlinear optics provides an attractive approach to capture such events directly in the time domain. Some examples of application of the method include probing the dynamics of melting on the time scale of phonon vibrations [82], photoisomerization of molecules [88], molecular dynamics of adsorbates [89, 90], interfacial solvent dynamics [91], transient band-flattening in semiconductors [92] and laser-induced desorption [93]. A review article discussing such time-resolved studies in metals can be found in... [Pg.1296]

The easiest method for creating many vibrational excitations is to use convenient pulsed visible or near-UV lasers to pump electronic transitions of molecules which undergo fast nonradiative processes such as internal conversion (e.g. porjDhyrin [64, 65] or near-IR dyes [66, 62, 68 and 62]), photoisomerization (e.g. stilbene [12] or photodissociation (e.g. Hgl2 [8]). Creating a specific vibrational excitation D in a controlled way requires more finesse. The easiest method is to use visible or near-UV pulses to resonantly pump a vibronic transition (e.g. [Pg.3038]

THE cvcLOBUTADENE-TETRAHEDRANE SYSTEM. A related reaction is the photoisomerization of cyclobutadiene (CBD). It was found that unsubstituted CBD does not react in an argon matrix upon irradiation, while the tri-butyl substituted derivative forms the corresponding tetrahedrane [86,87]. These results may be understood on the basis of a conical intersection enclosed by the loop shown in Figure 37. The analogy with the butadiene loop (Fig. 13) is obvious. The two CBDs and the biradical shown in the figure are the three anchors in this system. With small substituents, the two lobes containing the lone electrons can be far... [Pg.370]

In summary, all the experiments expressly selected to check the theoretical description provided fairly clear evidence in favour of both the basic electronic model proposed for the BMPC photoisomerization (involving a TICT-like state) and the essential characteristics of the intramolecular S and S, potential surfaces as derived from CS INDO Cl calculations. Now, combining the results of the present investigation with those of previous studies [24,25] we are in a position to fix the following points about the mechanism and dynamics of BMPC excited-state relaxation l)photoexcitation (So-Si)of the stable (trans) form results in the formation of the 3-4 cis planar isomer, as well as recovery of the trans one, through a perpendicular CT-like S] minimum of intramolecular origin, 2) a small intramolecular barrier (1.-1.2 kcal mol ) is interposed between the secondary trans and the absolute perp minima, 3) the thermal back 3-4 cis trans isomerization requires travelling over a substantial intramolecular barrier (=18 kcal moM) at the perp conformation, 4) solvent polarity effects come into play primarily around the perp conformation, due to localization of the... [Pg.396]

Electronic excited states are often reactive intermediates in many photochemical reactions. In a number of cases, the excited state may undergo energy relaxation. The photoisomerization reaction of fra i-stilbene provides a well-studied... [Pg.148]

A comparison of the rate constant for photoisomerization of the unsubstituted 3-phenyl derivative (kT = 3 x 1010 sec-1) to that of the 3-(p-methoxy phenyl) derivative (kr = 1.5 x 1010 sec-1) indicates that the presence of the p-methoxy groups imparts no special stability to the intermediate responsible for isomerization even though cleavage of a cyclopropane bond is predominant. Clearly these results are inconsistent with an intermediate possessing electron-poor or electron-rich species such as would be obtained from heterolytic cleavage of the cyclopropane. On the other hand, the results are consistent with a biradical species as intermediate. Further evidence consistent with this conclusion was obtained in a study of trans-3-p-cyanophenyl-/ra w-2-phenyl-1 -benzoylcyclopropane,<82)... [Pg.95]

A detailed analysis of photoisomerization of the nitrone group in the nitroxyl radical 4-phenyl-2,2,5,5-tetramethyl-3-imidazoline-3-oxide-l-oxyl, based on double electron-nuclear resonance methods, has shown that in the absence of oxygen the photochemical reaction occurs without affecting the radical center. The... [Pg.207]

Photoinduced electron transfer and photoisomerization can also be studied by FCS. [Pg.371]

Cyclophanes are naturally suited for MMPI (15b) calculations. The results ofsuch calculations regarding the structures and electronic spectra of the [m] paracyclophanes (n = 5-10) agreed well with the experimental data (169). Attempted X-ray analyses of [2.4]- and [2.5](9,10)-anthracenophanes (46) encountered serious disorder in the ahphatic bridges. MMPI calculations of all possible conformers of these molecules revealed four and six energy minima for 46a and 46b, respectively. Comparison of the calculated C10 C10 distances and bridge conformations with X-ray information unambiguously identified two conformations each for 46a and 46b as the final solutions. These and the calculated structures of photoisomer 47 were highly useful in the interpretation of fluorescence spectra and photoisomerization processes of 46 (170). [Pg.144]

Figure 3. Time-dependent simulations of the nonadiabatic photoisomerization dynamics exhibited by Model III, comparing results of the mean-field-trajectory method (dashed lines), the surface-hopping approach (thin lines), and exact quanmm calculations (full lines). Shown are the population probabilities of the initially prepared (a) adiabatic and (b) diabatic electronic state, respectively, as well as (c) the probability Pdsit) that the sytem remains in the initially prepared cis conformation. Figure 3. Time-dependent simulations of the nonadiabatic photoisomerization dynamics exhibited by Model III, comparing results of the mean-field-trajectory method (dashed lines), the surface-hopping approach (thin lines), and exact quanmm calculations (full lines). Shown are the population probabilities of the initially prepared (a) adiabatic and (b) diabatic electronic state, respectively, as well as (c) the probability Pdsit) that the sytem remains in the initially prepared cis conformation.
Because the mapping approach treats electronic and nuclear dynamics on the same dynamical footing, its classical limit can be employed to study the phase-space properties of a nonadiabatic system. With this end in mind, we adopt a onemode two-state spin-boson system (Model IVa), which is mapped on a classical system with two degrees of freedom (DoF). Studying various Poincare surfaces of section, a detailed phase-space analysis of the problem is given, showing that the model exhibits mixed classical dynamics [123]. Furthermore, a number of periodic orbits (i.e., solutions of the classical equation of motion that return to their initial conditions) of the nonadiabatic system are identified and discussed [125]. It is shown that these vibronic periodic orbits can be used to analyze the nonadiabatic quantum dynamics [126]. Finally, a three-mode model of nonadiabatic photoisomerization (Model III) is employed to demonstrate the applicability of the concept of vibronic periodic orbits to multidimensional dynamics [127]. [Pg.326]

Although the phase space of the nonadiabatic photoisomerization system is largely irregular, Fig. 36A demonstrates that the time evolution of a long trajectory can be characterized by a sequence of a few types of quasi-periodic orbits. The term quasi-periodic refers here to orbits that are close to an unstable periodic orbit and are, over a certain timescale, exactly periodic in the slow torsional mode and approximately periodic in the high-frequency vibrational and electronic degrees of freedom. In Fig. 36B, these orbits are schematically drawn as lines in the adiabatic potential-energy curves Wo and Wi. The first class of quasi-periodic orbits we wish to consider are orbits that predominantly... [Pg.337]


See other pages where Electron photoisomerization is mentioned: [Pg.419]    [Pg.310]    [Pg.499]    [Pg.726]    [Pg.228]    [Pg.318]    [Pg.53]    [Pg.106]    [Pg.183]    [Pg.184]    [Pg.185]    [Pg.188]    [Pg.397]    [Pg.192]    [Pg.36]    [Pg.243]    [Pg.137]    [Pg.482]    [Pg.415]    [Pg.476]    [Pg.10]    [Pg.13]    [Pg.258]    [Pg.127]    [Pg.488]    [Pg.291]    [Pg.249]    [Pg.284]    [Pg.334]    [Pg.335]    [Pg.337]    [Pg.340]    [Pg.129]   
See also in sourсe #XX -- [ Pg.105 ]




SEARCH



Photoisomerism

Photoisomerization

© 2024 chempedia.info