Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron pair transition

Fig. 3-1. Band assignment for the diffuse reflectance spectrum of a goethite. Note that one band eould not be assigned. EPT electron pair transition OMCT oxygen-metal charge transfer. From Seheinost et al., 1999 with permission. Fig. 3-1. Band assignment for the diffuse reflectance spectrum of a goethite. Note that one band eould not be assigned. EPT electron pair transition OMCT oxygen-metal charge transfer. From Seheinost et al., 1999 with permission.
We term the in-phase combination an aromatic transition state (ATS) and the out-of-phase combination an antiaromatic transition state (AATS). An ATS is obtained when an odd number of electron pairs are re-paired in the reaction, and an AATS, when an even number is re-paired. In the context of reactions, a system in which an odd number of electrons (3, 5,...) are exchanged is treated in the same way—one of the electron pairs may contain a single electron. Thus, a three-electron system reacts as a four-electron one, a five-electron system as a six-electron one, and so on. [Pg.346]

According to Eq. (A.4), if < 0, the ground state will be the in-phase combination, and the out-of-phase one, an excited state. On the other hand, if > 0, the ground state will be the out-of-phase combination, while the in-phase one is an excited state. This conclusion is far reaching, since it means that the electronic wave function of the ground state is nonsymmetric in this case, in contrast with common chemical intuition. We show that when an even number of electron pairs is exchanged, this is indeed the case, so that the transition state is the out-of-phase combination. [Pg.392]

UV-VIS Aldehydes and ketones have two absorption bands in the ultraviolet region Both involve excitation of an electron to an antibonding tt orbital In one called a TT TT transition the electron is one of the tt electrons of the C=0 group In the other called an n ir transition it is one of the oxygen lone pair electrons Because the tt electrons are more strongly held than the lone parr electrons the transition is of... [Pg.741]

Lewis acids are defined as molecules that act as electron-pair acceptors. The proton is an important special case, but many other species can play an important role in the catalysis of organic reactions. The most important in organic reactions are metal cations and covalent compounds of metals. Metal cations that play prominent roles as catalysts include the alkali-metal monocations Li+, Na+, K+, Cs+, and Rb+, divalent ions such as Mg +, Ca +, and Zn, marry of the transition-metal cations, and certain lanthanides. The most commonly employed of the covalent compounds include boron trifluoride, aluminum chloride, titanium tetrachloride, and tin tetrachloride. Various other derivatives of boron, aluminum, and titanium also are employed as Lewis acid catalysts. [Pg.233]

The hypothesis that electron-pair donation from the a atom will stabilize this transition state leads to the difficulty that the attacking atom must carry more bonds than conventional valence bond symbolism admits. Despite this problem, the general idea is expressed by 7 and its relationship to 6 by resonance. It is possible that transition state stabilization can be obtained in this way by rehybridization of the entire molecule. Klopman et al. suggest that the a effect arises from... [Pg.356]

The development of molecular orbital theory (MO theory) in the late 1920s overcame these difficulties. It explains why the electron pair is so important for bond formation and predicts that oxygen is paramagnetic. It accommodates electron-deficient compounds such as the boranes just as naturally as it deals with methane and water. Furthermore, molecular orbital theory can be extended to account for the structures and properties of metals and semiconductors. It can also be used to account for the electronic spectra of molecules, which arise when an electron makes a transition from an occupied molecular orbital to a vacant molecular orbital. [Pg.239]

Transition from Electron-Pair to Ionic Bonds. The Hydrogen Bond.—... [Pg.70]

It is then shown that (excepting the rare-earth ions) the magnetic moment of a non-linear molecule or complex ion is determined by the number of unpaired electrons, being equal to ms = 2 /S(S + 1), in which 5 is half that number. This makes it possible to determine from magnetic data which eigenfunctions are involved in bond formation, and so to decide between electron-pair bonds and ionic or ion-dipole bonds for various complexes. It is found that the transition-group elements almost without exception form electron-pair bonds with CN, ionic bonds with F, and ion-dipole bonds with H2O with other groups the bond type varies. [Pg.98]

A question which has been keenly argued for a number of years is the following if it were possible continuously to vary one or more of the parameters determining the nature of a system such as a molecule or a crystal, say the effective nuclear charges, then would the transition from one extreme bond type to another take place continuously, or would it show discontinuities For example, are there possible all intermediate bond types between the pure ionic bond and the pure electron-pair bond With the development of our knowledge of the nature of the chemical bond it has become evident that this question and others like it cannot be answered categorically. It is necessary to define the terms used and to indicate the point of view adopted and then it may turn out, as with this question, that no statement of universal application can be made. [Pg.299]

In the following sections, after a discussion of the properties of ionic compounds and compounds containing electron-pair bonds, the transition from one extreme to the other is considered. It is concluded that in some cases the transition could take place continuously, whereas in others an effective discontinuity would appear. [Pg.299]

The magnetic criterion is particularly valuable because it provides a basis for differentiating sharply between essentially ionic and essentially electron-pair bonds Experimental data have as yet been obtained for only a few of the interesting compounds, but these indicate that oxides and fluorides of most metals are ionic. Electron-pair bonds are formed by most of the transition elements with sulfur, selenium, tellurium, phosphorus, arsenic and antimony, as in the sulfide minerals (pyrite, molybdenite, skutterudite, etc.). The halogens other than fluorine form electron-pair bonds with metals of the palladium and platinum groups and sometimes, but not always, with iron-group metals. [Pg.313]


See other pages where Electron pair transition is mentioned: [Pg.133]    [Pg.151]    [Pg.48]    [Pg.133]    [Pg.151]    [Pg.48]    [Pg.1142]    [Pg.2222]    [Pg.373]    [Pg.394]    [Pg.46]    [Pg.259]    [Pg.333]    [Pg.417]    [Pg.168]    [Pg.49]    [Pg.6]    [Pg.52]    [Pg.294]    [Pg.557]    [Pg.558]    [Pg.333]    [Pg.741]    [Pg.356]    [Pg.356]    [Pg.360]    [Pg.3]    [Pg.913]    [Pg.193]    [Pg.229]    [Pg.364]    [Pg.443]    [Pg.359]    [Pg.413]    [Pg.773]    [Pg.65]    [Pg.87]    [Pg.88]    [Pg.91]    [Pg.312]   
See also in sourсe #XX -- [ Pg.29 , Pg.37 , Pg.41 ]




SEARCH



Transitions pairs

© 2024 chempedia.info