Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particle, small, electron microscopy

A particle sample collected from the flue gases of the No. 12+13 pine pyrolysis oil was studied by light and electron microscopy. Single particles contained a lot of inorganic substances, mainly calcium, other substances being iron, silicon, magnesium, aluminium, potassium, chrome and vanadium. The amount of organic substances (e.g. tars) or carbon is likely small. [Pg.1475]

Flueli M, Buffat P A and Borel J P 1988 Real time observation by high resolution electron microscopy (HREM) of the coalescence of small gold particles in the electron beam Surf. Sc/. 202 343... [Pg.2922]

Regarding a historical perspective on carbon nanotubes, very small diameter (less than 10 nm) carbon filaments were observed in the 1970 s through synthesis of vapor grown carbon fibers prepared by the decomposition of benzene at 1100°C in the presence of Fe catalyst particles of 10 nm diameter [11, 12]. However, no detailed systematic studies of such very thin filaments were reported in these early years, and it was not until lijima s observation of carbon nanotubes by high resolution transmission electron microscopy (HRTEM) that the carbon nanotube field was seriously launched. A direct stimulus to the systematic study of carbon filaments of very small diameters came from the discovery of fullerenes by Kroto, Smalley, and coworkers [1], The realization that the terminations of the carbon nanotubes were fullerene-like caps or hemispheres explained why the smallest diameter carbon nanotube observed would be the same as the diameter of the Ceo molecule, though theoretical predictions suggest that nanotubes arc more stable than fullerenes of the same radius [13]. The lijima observation heralded the entry of many scientists into the field of carbon nanotubes, stimulated especially by the un-... [Pg.36]

Cationic quaternary ammonium compounds such as distearyldimethylammonium-chloride (DSDMAC) used as a softener and as an antistatic, form hydrated particles in a dispersed phase having a similar structure to that of the multilayered liposomes or vesicles of phospholipids 77,79). This liposome-like structure could be made visible by electron microscopy using the freeze-fracture replica technique as shown by Okumura et al. 79). The concentric circles observed should be bimolecular lamellar layers with the sandwiched parts being the entrapped water. In addition, the longest spacings of the small angle X-ray diffraction pattern can be attributed to the inter-lamellar distances. These liposome structures are formed by the hydrated detergent not only in the gel state but also at relatively low concentrations. [Pg.12]

Heat treatment at 400 °C of pure polymer specimens and composites containing 0.16 and 0.34 of calcite has shown [221] that the base polymer was sublimated without residue the specimen with Vf = 0.16 left a powder, and the specimen with Vf = 0.34 a brittle skeleton. Electron microscopy confirms that the latter consists of large crystalline inclusions interconnected by systems of small particles. [Pg.32]

In the traditional lithography approach, researchers continued to consider the idea that modem STM (scanning tunnel Microscopy) could be the proper tool for the formation of two-junction systems when working with very small particles. This consideration had related the studies of single-electron phenomena to the concept of quantum dots (Glazman and Shechter 1989). [Pg.174]

Because XPS is a surface sensitive technique, it recognizes how well particles are dispersed over a support. Figure 4.9 schematically shows two catalysts with the same quantity of supported particles but with different dispersions. When the particles are small, almost all atoms are at the surface, and the support is largely covered. In this case, XPS measures a high intensity Ip from the particles, but a relatively low intensity Is for the support. Consequently, the ratio Ip/Is is high. For poorly dispersed particles, Ip/Is is low. Thus, the XPS intensity ratio Ip/Is reflects the dispersion of a catalyst on the support. Several models have been reported that derive particle dispersions from XPS intensity ratios, frequently with success. Hence, XPS offers an alternative determination of dispersion for catalysts that are not accessible to investigation by the usual techniques used for particle size determination, such as electron microscopy and hydrogen chemisorption. [Pg.138]

Suppose you prepared an iron oxide catalyst supported on an alumina support. Your aim is to use the catalyst in the metallic form, but you want to keep the iron particles as small as possible, with a degree of reduction of at least 50%. Hence, you need to know the particle size of the iron oxide in the unreduced catalyst, as well as the size of the iron particles and their degree of reduction in the metallic state. Refer to Chapters 4 and 5 to devise a strategy to obtain this information. (Unfortunately for you, it appears that electron microscopy and X-ray diffraction do not provide useful data on the unreduced catalyst.)... [Pg.407]

Electron Microscopy and Diffraction Techniques for the Study of Small Particles... [Pg.329]

High resolution electron microscopy has recently demonstrated the capability to directly resolve the atomic structure of surfaces on small particles and thin films. In this paper we briefly review experimental observations for gold (110) and (111) surfacest and analyse how these results when combined with theoretical and experimental morphological studies, influence the interpretation of geometrical catalytic effects and the transfer of bulk surface experimental data to heterogeneous catalysts. [Pg.341]

Analysis of individual catalyst particles less than IMm in size requires an analytical tool that focuses electrons to a small probe on the specimen. Analytical electron microscopy is usually performed with either a dedicated scanning transmission electron microscope (STEM) or a conventional transmission electron microscope (TEM) with a STEM attachment. These instruments produce 1 to 50nm diameter electron probes that can be scanned across a thin specimen to form an image or stopped on an image feature to perform an analysis. In most cases, an electron beam current of about 1 nanoampere is required to produce an analytical signal in a reasonable time. [Pg.362]

Figure 1. Three levels of analysis for catalyst materials, a) bulk analysis of an entire catalyst pellet, b) surface analysis and depth profiling from the surface inward, c) analytical electron microscopy of individual catalyst particles too small for analysis by other techniques. Figure 1. Three levels of analysis for catalyst materials, a) bulk analysis of an entire catalyst pellet, b) surface analysis and depth profiling from the surface inward, c) analytical electron microscopy of individual catalyst particles too small for analysis by other techniques.
However, in more recent times science has made rapid strides in this direction. It is now possible to use EXAFS in situ during a catalytic reaction to examine the average coordination of metal atoms in the small particles which often exist in precious metal catalysts [2]. High resolution transmission electron microscopy has evolved to the level of atomic resolution, but can only be used ex-situ, or in situ with moderate pressures when special cells are fitted [3]. [Pg.287]

Transmission electron microscopy for [Pd/l]coii reveals the presence of small spherical but in some cases agglomerated particles of ca. 4 nm mean size, and wide angle X-ray scattering analyses evidence the fee structure of bulk palladium [44] (Figure 1). [Pg.432]

Fig. 35. Size distribution as determined by electron microscopy and absorption spectrum of a CdS sample of small particle size... Fig. 35. Size distribution as determined by electron microscopy and absorption spectrum of a CdS sample of small particle size...

See other pages where Particle, small, electron microscopy is mentioned: [Pg.252]    [Pg.177]    [Pg.714]    [Pg.501]    [Pg.252]    [Pg.37]    [Pg.104]    [Pg.1629]    [Pg.328]    [Pg.339]    [Pg.24]    [Pg.163]    [Pg.91]    [Pg.939]    [Pg.170]    [Pg.119]    [Pg.446]    [Pg.45]    [Pg.329]    [Pg.329]    [Pg.332]    [Pg.334]    [Pg.341]    [Pg.473]    [Pg.19]    [Pg.33]    [Pg.149]    [Pg.158]    [Pg.348]    [Pg.528]   


SEARCH



Electron microscopy, small metal particle

Experimental and theoretical developments in small metal-particle catalysis using electron microscopy

Particle electron microscopy

Particles electrons

Small electrons

Small metal particles transmission electron microscopy

Small particle

Supported metals, small particles electron microscopy

© 2024 chempedia.info