Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron density maps modeling

The comparison with experiment can be made at several levels. The first, and most common, is in the comparison of derived quantities that are not directly measurable, for example, a set of average crystal coordinates or a diffusion constant. A comparison at this level is convenient in that the quantities involved describe directly the structure and dynamics of the system. However, the obtainment of these quantities, from experiment and/or simulation, may require approximation and model-dependent data analysis. For example, to obtain experimentally a set of average crystallographic coordinates, a physical model to interpret an electron density map must be imposed. To avoid these problems the comparison can be made at the level of the measured quantities themselves, such as diffraction intensities or dynamic structure factors. A comparison at this level still involves some approximation. For example, background corrections have to made in the experimental data reduction. However, fewer approximations are necessary for the structure and dynamics of the sample itself, and comparison with experiment is normally more direct. This approach requires a little more work on the part of the computer simulation team, because methods for calculating experimental intensities from simulation configurations must be developed. The comparisons made here are of experimentally measurable quantities. [Pg.238]

Deisenhofer, J., et al. X-ray structure analysis of a membrane protein complex. Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. f. Mol. Biol. 180 385-398, 1984. [Pg.249]

The three-dimensional structure of protein molecules can be experimentally determined by two different methods, x-ray crystallography and NMR. The interaction of x-rays with electrons in molecules arranged in a crystal is used to obtain an electron-density map of the molecule, which can be interpreted in terms of an atomic model. Recent technical advances, such as powerful computers including graphics work stations, electronic area detectors, and... [Pg.391]

Jones TA, Zou JY, Cowan SW, Kjeldegaard M. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Cryst 1991 A47 110-9... [Pg.298]

The structure was refined by block-diagonal least squares in which carbon and oxygen atoms were modeled with isotropic and then anisotropic thermal parameters. Although many of the hydrogen atom positions were available from difference electron density maps, they were all placed in ideal locations. Final refinement with all hydrogen atoms fixed converged at crystallographic residuals of R=0.061 and R =0.075. [Pg.150]

The difference electron density map following the last cycle of least squares refinement did not show evidence for a simple disorder model to explain the anomalously high B for the hydroxyl oxygen. Attempts to refine residual peaks with partial oxygen occupancies did not significantly improve the agreement index. [Pg.156]

A search for intermolecular bonds resulted in one possible hydrogen bond between hydroxyl 013 and lactone carbonyl Ol. The distance between 01 and 013 is 2.85 A, a value well within the range expected for OH-O hydrogen bonds (25). The hydrogen atom position for hydroxyl 013 was chosen to be along the 013-01 vector. The hydrogen position was not evident in the difference electron density map, presumably due to problems modeling the 013 position. [Pg.156]

Once an electron density map has become available, atoms may be fitted into the map by means of computer graphics to give an initial structural model of the protein. The quality of the electron density map and structural model may be improved through iterative structural refinement but will ultimately be limited by the resolution of the diffraction data. At low resolution, electron density maps have very few detailed features (Fig. 6), and tracing the protein chain can be rather difficult without some knowledge of the protein structure. At better than 3.0 A resolution, amino acid side chains can be recognized with the help of protein sequence information, while at better than 2.5 A resolution solvent molecules can be observed and added to the structural model with some confidence. As the resolution improves to better than 2.0 A resolution, fitting of individual atoms may be possible, and most of the... [Pg.20]

At a certain stage in the refinement, the electron density map is interpreted using a model representation of the charge density distribution to extract the atomic coordinates. A commonly used scattering formalism is the independent-atom model (IAM), in which the total charge density in the crystal is approximated by the superposition... [Pg.353]

The result is the electron density map of the protein crystal. The final task for the crystallographer is to build the appropriate protein model, i. e., putting amino acid for amino acid into the electron density. Routinely the theoretical amplitudes and phases are calculated from the model and compared to the experimental data in order to check the correctness of model building. The positions of the protein backbone and the amino acid side chains are well defined by X-ray structures at a... [Pg.89]

AIM theory provides a physical basis for the theory of Lewis electron pairs and the VSEPR model of molecular geometry. Equipped with computers and computer-generated, three-dimensional electron density maps, scientists are able to view molecules and predict molecular phenomena without even having to get off their chairs ... [Pg.186]

For molecules of molecular weight above 20,000 g/mol, X-ray diffraction remains the only experimental approach available to obtain detailed and reliable three-dimensional atomic models. The major steps of the method include the obtention of large and well-ordered crystals, their exposure to X-rays and collection of diffraction data and the phasing of these data to obtain by Fourier analysis a three-dimensional view (or map) of the electron density of the molecule. Finally a three-dimensional atomic model of the protein is fitted like a hand in a glove within this map, using a kit containing all the available biochemical and spectroscopic information (Table 6.2). The reliability of the final atomic model is of course dependent on the qnality of the electron density map. This qnality depends on the number of X-ray data per atom and on the resolution and accnracy of these data, which in turn are highly dependent on the size and quality of the crystals. [Pg.111]

Interpretation of the electron density maps showed that the large subunit could not be modelled beyond His536 (Fig. 6.10), that is fifteen amino acids short of the 551 residues predicted by the nucleotide sequence (Table 6.2). At about the same time, the cleavage of this fifteen-residue stretch, which is performed by a specific protease, was reported to be an obligatory step for the maturation of the enzyme (Menon et al. 1993). It is also of interest to note that in all [NiFe] hydrogenase crystal structures this buried C-terminal histidine is ligated to a metal atom which is either a magnesium or an iron (see above). [Pg.119]

The second approach is to use Fourier methods to calculate the electron density based on the model (using calculated Fs and phases, the vector Fc) and compare this with the electron density based on the observations (with calculated phases, the vector Fo). An electron-density map is calculated based on I To I — I. Pc I- This so-called difference map will give an accurate representation of where the errors are in the model compared with the experimental data. If an atom is located in the model where there is no experimental observation for it, then the difference map will show a negative density peak. Conversely, when there is no atom in the model where there should be, then a positive peak will be present. This map can be used to manually move, remove, or add atoms into the model. [Pg.465]

ESP and electron density maps were obtained by analytical calculations using the program MOLPROP with parameters for the K-model Characteristic peculiarities in the ESP along bonding lines are seen in the (110) map for MgO (Fig. 6). All peculiarities in the ESP distribution can be seen, i.e. in the form of maximums on the nuclei and at one-, two-, and three-dimensional minimums in the inter-nuclear areas. [Pg.111]


See other pages where Electron density maps modeling is mentioned: [Pg.80]    [Pg.80]    [Pg.116]    [Pg.501]    [Pg.382]    [Pg.383]    [Pg.384]    [Pg.390]    [Pg.340]    [Pg.283]    [Pg.287]    [Pg.288]    [Pg.289]    [Pg.293]    [Pg.296]    [Pg.150]    [Pg.69]    [Pg.19]    [Pg.115]    [Pg.352]    [Pg.108]    [Pg.211]    [Pg.186]    [Pg.194]    [Pg.194]    [Pg.254]    [Pg.114]    [Pg.118]    [Pg.118]    [Pg.463]    [Pg.45]    [Pg.53]    [Pg.327]    [Pg.26]    [Pg.261]    [Pg.307]   
See also in sourсe #XX -- [ Pg.212 , Pg.217 , Pg.218 ]




SEARCH



Density model

Density models model

Electron density mapping

Electron density maps model building

Electron-density maps

Electron-density model

Electronic density map

Electronic models

Modeling density

© 2024 chempedia.info