Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron density experimental

Pyridine JV-oxide, amino-, 133-134 2-bromo-4-ethoxy-, amination of, 137 2-chloro-, animation of, 133 electron densities, experimental, 161-162... [Pg.239]

Chemists are able to do research much more efficiently if they have a model for understanding chemistry. Population analysis is a mathematical way of partitioning a wave function or electron density into charges on the nuclei, bond orders, and other related information. These are probably the most widely used results that are not experimentally observable. [Pg.99]

Numerous m.o.-theoretical calculations have been made on quinoline and quinolinium. Comparisons of the experimental results with the theoretical predictions reveals that, as expected (see 7.2), localisation energies give the best correlation. jr-Electron densities are a poor criterion of reactivity in electrophilic substitution the most reactive sites for both the quinolinium ion and the neutral molecule are predicted to be the 3-, 6- and 8-positions. ... [Pg.212]

Experimental confirmation of the metal-nitrogen coordination of thiazole complexes was recently given by Pannell et al. (472), who studied the Cr(0), Mo(0), and W(0) pentacarbonyl complexes of thiazole (Th)M(CO)5. The infrared spectra are quite similar to those of the pyridine analogs the H-NMR resonance associated with 2- and 4-protons are sharper and possess fine structure, in contrast to the broad, featureless resonances of free thiazole ligands. This is expected since removal of electron density from nitrogen upon coordination reduces the N quad-rupole coupling constant that is responsible for the line broadening of the a protons. [Pg.129]

Considerable alternation of the electron density has been confirmed experimentally by means of nmr spectroscopy (3). [Pg.491]

The most complete discussion of the electrophilic substitution in pyrazole, which experimentally always takes place at the 4-position in both the neutral pyrazole and the cation (Section 4.04.2.1.1), is to be found in (70JCS(B)1692). The results reported in Table 2 show that for (29), (30) and (31) both tt- and total (tt cr)-electron densities predict electrophilic substitution at the 4-position, with the exception of an older publication that should be considered no further (60AJC49). More elaborate models, within the CNDO approximation, have been used by Burton and Finar (70JCS(B)1692) to study the electrophilic substitution in (29) and (31). Considering the substrate plus the properties of the attacking species (H", Cl" ), they predict the correct orientation only for perpendicular attack on a planar site. For the neutral molecule (the cation is symmetrical) the second most reactive position towards H" and Cl" is the 5-position. The activation energies (kJmoF ) relative to the 4-position are H ", C-3, 28.3 C-5, 7.13 Cr, C-3, 34.4 C-5, 16.9. [Pg.173]

The comparison with experiment can be made at several levels. The first, and most common, is in the comparison of derived quantities that are not directly measurable, for example, a set of average crystal coordinates or a diffusion constant. A comparison at this level is convenient in that the quantities involved describe directly the structure and dynamics of the system. However, the obtainment of these quantities, from experiment and/or simulation, may require approximation and model-dependent data analysis. For example, to obtain experimentally a set of average crystallographic coordinates, a physical model to interpret an electron density map must be imposed. To avoid these problems the comparison can be made at the level of the measured quantities themselves, such as diffraction intensities or dynamic structure factors. A comparison at this level still involves some approximation. For example, background corrections have to made in the experimental data reduction. However, fewer approximations are necessary for the structure and dynamics of the sample itself, and comparison with experiment is normally more direct. This approach requires a little more work on the part of the computer simulation team, because methods for calculating experimental intensities from simulation configurations must be developed. The comparisons made here are of experimentally measurable quantities. [Pg.238]

The three-dimensional structure of protein molecules can be experimentally determined by two different methods, x-ray crystallography and NMR. The interaction of x-rays with electrons in molecules arranged in a crystal is used to obtain an electron-density map of the molecule, which can be interpreted in terms of an atomic model. Recent technical advances, such as powerful computers including graphics work stations, electronic area detectors, and... [Pg.391]

Soft electrophiles will prefer carbon, and it is found experimentally that most alkyl halides react to give C-alkylation. Because of the n character of the HOMO of the anion, there is a stereoelectronic preference for attack of the electrophile approximately perpendicular to the plane of the enolate. The frontier orbital is ip2, with electron density mainly at O and C-2. The tpi orbital is transformed into the C=0 bond. The transition state for an 8 2 alkylation of an enolate can be represented as below. [Pg.435]

Optimize the structure of acetyl radical using the 6-31G(d) basis set at the HF, MP2, B3LYP and QCISD levels of theory. We chose to perform an Opt Freq calculation at the Flartree-Fock level in order to produce initial force constants for the later optimizations (retrieved from the checkpoint file via OptsReadFC). Compare the predicted spin polarizations (listed as part of the population analysis output) for the carbon and oxygen atoms for the various methods to one another and to the experimental values of 0.7 for the C2 carbon atom and 0.2 for the oxygen atom. Note that for the MP2 and QCISD calculations you will need to include the keyword Density=Current in the job s route section, which specifies that the population analysis be performed using the electron density computed by the current theoretical method (the default is to use the Hartree-Fock density). [Pg.130]

Experimentally, the rates of Diels-Alder reactions between electron-rich dienes and electron-poor dienophiles generally increase with increased alkyl substitution on the diene. This is because alkyl groups act as electron donors and lead to buildup of electron density on the diene. An exception to this is the reaction of Z,Z-hexa-2,4-diene with tetracyanoethylene (TCNE), which is actually slower than the corresponding addition involving E-penta-1,3-diene. [Pg.277]

For a preliminary survey of the electron density, it is usual to make a pictorial representation as we did in previous chapters. Whilst such diagrams do not carry much information, they do provide a theoretical measure which can be compared to the results of X-ray diffraction studies. A whole volume of the Transactions of the American Chemical Society (1972) was devoted to the Symposium Experimental and Theoretical Studies of Electron Densities . [Pg.104]

FMO calculations using the MNDO method and electron-density calculations were performed to establish which calculations are in agreement with the experimentally observed regioselectivity of the SnH amination of some nitronaphthyridines (see Section III,B). [Pg.324]


See other pages where Electron density experimental is mentioned: [Pg.235]    [Pg.239]    [Pg.239]    [Pg.235]    [Pg.239]    [Pg.239]    [Pg.107]    [Pg.136]    [Pg.104]    [Pg.113]    [Pg.177]    [Pg.610]    [Pg.99]    [Pg.257]    [Pg.130]    [Pg.18]    [Pg.237]    [Pg.306]    [Pg.175]    [Pg.5]    [Pg.133]    [Pg.466]    [Pg.105]    [Pg.277]    [Pg.4]    [Pg.1267]    [Pg.122]    [Pg.396]    [Pg.302]    [Pg.325]   
See also in sourсe #XX -- [ Pg.118 , Pg.160 ]




SEARCH



Density experimental

© 2024 chempedia.info