Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron affinity structures

Mass spectrometry, which is the only technique that can be used to characterize met-cars and related metal-carbide clusters, implies that the detected clusters are ionized. This requirement opens a route to a variety of experimental procedures enabling insight to be gained into physical properties such as ionization energies, electron affinities, structure, and collective electronic properties such as thermionic electron emission and delayed atomic ion emission. [Pg.1676]

Miller T M, Leopold D G, Murray K K and Lineberger W C 1986 Electron affinities of the alkali halides and the structure of their negative ions J. Chem. Phys. 85 2368-75... [Pg.823]

Edit Output File icon xlix effective core potentials 101 electron affinity 142 electron correlation 6, 114,118 electron density 165 electron spin 259 electronic structure theory 3 electrostatic potential-derived charges CHelpG 196... [Pg.298]

The ground-state electronic structure of As, as with all Group 15 elements features 3 unpaired electrons ns np there is a substantial electron affinity for the acquisition of 1 electron but further additions must be effected against considerable coulombic repulsion, and the formation of As is highly endothermic. Consistent with this there are no ionic compounds containing the arsenide ion and... [Pg.552]

The polarity of the C—-OH bond, i.e., the basicity of the carbinol-amine, depends on its structure, particularly on the stability of the ring system (degree of aromatic character), and the electron affinity of the substituents on nitrogen and carbon. Of course, external factors also play an important role in the equilibrium temperature, polarity of the solvent, and presence or absence of catalysts (the solvent can also act as a catalyst). [Pg.170]

In addition to the obvious structural information, vibrational spectra can also be obtained from both semi-empirical and ab initio calculations. Computer-generated IR and Raman spectra from ab initio calculations have already proved useful in the analysis of chloroaluminate ionic liquids [19]. Other useful information derived from quantum mechanical calculations include and chemical shifts, quadru-pole coupling constants, thermochemical properties, electron densities, bond energies, ionization potentials and electron affinities. As semiempirical and ab initio methods are improved over time, it is likely that investigators will come to consider theoretical calculations to be a routine procedure. [Pg.156]

Evans considers that corrosion may be regarded as a branch of chemical thermodynamics or kinetics, as the outcome of electron affinities of metals and non-metals, as short-circuited electrochemical cells, or as the demolition of the crystal structure of a metal. [Pg.6]

Schematic energy level diagrams of a metal/polymer/metal structure before and after the layers are in contact are shown in the top two drawings of Figure 11-6. Before contact, the metals and the polymer have relative energies determined by the metal work functions and the electron affinity and ionization potential of the polymer. After contact there is a built-in electric field in the structure due to the different Schottky energy barriers of the asymmetric metal contacts. Capacitance-voltage measurements demonstrate that the metal/polymer/metal structures are fully depleted and therefore the electric field is constant throughout the bulk of the structure [31, 35]. The built-in potential, Vhh i.e. the product of the constant built-in electric field and the layer thickness may be written... Schematic energy level diagrams of a metal/polymer/metal structure before and after the layers are in contact are shown in the top two drawings of Figure 11-6. Before contact, the metals and the polymer have relative energies determined by the metal work functions and the electron affinity and ionization potential of the polymer. After contact there is a built-in electric field in the structure due to the different Schottky energy barriers of the asymmetric metal contacts. Capacitance-voltage measurements demonstrate that the metal/polymer/metal structures are fully depleted and therefore the electric field is constant throughout the bulk of the structure [31, 35]. The built-in potential, Vhh i.e. the product of the constant built-in electric field and the layer thickness may be written...
Basically, the first approach to correlate the polyimide chain organization to the monomer structure was to take into consideration the electron affinity of the anhydride and the ionization potential of the diamine,10 as shown in Fig. 5.3. The strongest interactions between the polymeric chain are expected when the polyimide is prepared with the dianhydride having the highest electron affinity and die diamine with the lowest ionization potential. The strongest interchain interaction leads to high Tg and low solubility. [Pg.274]

Hydrogen bonds are formed to some extent by oxygen ((H20)x, ice, etc.) and perhaps also in some cases by nitrogen. The electrostatic structure for the hydrogen bond explains the observation that only these atoms of high electron affinity form such bonds, a fact for which no explanation was given by the older conception. It is of interest that there is considerable... [Pg.71]

S. W., Melton, C. M. Estimation of electron affinity based on structure acfivity relafionships. Quant. Struct.-Activ. Rd. 1993, 12, 389-396. [Pg.403]

Much of what is knotm about the structure response of the ECD is based on empirical observations. Clearly, the ability to correlate the response of the detector to fundamental molecular parameters would be useful. Chen and Wentworth have shorn that the information required for this purpose is the electron affinity of the molecule, the rate constant for the electron attachment reaction and its activation energy, and the rate constant for the, ionic recombination reaction [117,141,142]. in general, the direct calculation of detector response factors have rarely Jseen carried j out, since the electron affinities and rate constants for most compounds of interest are unknown. [Pg.144]


See other pages where Electron affinity structures is mentioned: [Pg.802]    [Pg.376]    [Pg.1282]    [Pg.395]    [Pg.235]    [Pg.177]    [Pg.174]    [Pg.342]    [Pg.88]    [Pg.181]    [Pg.291]    [Pg.104]    [Pg.26]    [Pg.83]    [Pg.107]    [Pg.1066]    [Pg.54]    [Pg.102]    [Pg.195]    [Pg.309]    [Pg.639]    [Pg.22]    [Pg.2]    [Pg.17]    [Pg.222]    [Pg.177]    [Pg.99]    [Pg.232]    [Pg.213]    [Pg.1066]    [Pg.208]    [Pg.138]    [Pg.651]    [Pg.104]    [Pg.149]    [Pg.154]    [Pg.40]    [Pg.226]   
See also in sourсe #XX -- [ Pg.397 ]




SEARCH



Electron affinity

Electronic affinity

Electrons electron affinity

© 2024 chempedia.info