Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrogravimetry controlled-potential method

In electrogravimetry, also called electrodeposition, an element, e.g., a metal such as copper, is completely precipitated from its ionic solution on an inert cathode, e.g., platinum gauze, via electrolysis and the amount of precipitate is established gravimetrically in the newer and more selective methods one applies slow electrolysis (without stirring) or rapid electrolysis (with stirring), both procedures either with a controlled potential or with a constant current. Often such a method is preceded by an electrolytic separation using a stirred cathodic mercury pool, by means of which elements such as Fe, Ni, Co, Cu, Zn and Cd are quantitatively taken up from an acidic solution whilst other elements remain in solution. [Pg.114]

A method that completely electrolyzes the substances under study is used in electrogravimetry and coulometry. The method is also useful in electrolytic separations and electrolytic syntheses. Electrolysis is carried out either at a controlled potential or at a controlled current. [Pg.143]

In electrogravimetry [19], the analyte, mostly metal ions, is electrolytically deposited quantitatively onto the working electrode and is determined by the difference in the mass of the electrode before and after the electrolysis. A platinum electrode is usually used as a working electrode. The electrolysis is carried out by the con-trolled-potential or the controlled-current method. The change in the current-potential relation during the process of metal deposition is shown in Fig. 5.33. The curves in Fig. 5.33 differ from those in Fig. 5.31 in that the potentials at i=0 (closed circles) are equal to the equilibrium potential of the M +/M system at each instant. In order that the curves in Fig. 5.33 apply to the case of a platinum working electrode, the electrode surface must be covered with at least a monolayer of metal M. Then, if the potential of the electrode is kept more positive than the equilibrium potential, the metal (M) on the electrode is oxidized and is dissolved into solution. On the other hand, if the potential of the electrode is kept more negative than the equilibrium potential, the metal ion (Mn+) in the solution is reduced and is deposited on the electrode. [Pg.145]

In the electrogravimetry and coulometry described in Section 5.6, the substance under study is completely electrolyzed in obtaining the analytical information. A complete electrolysis is also carried out in electrolytic syntheses and separations. Electrolytic methods are advantageous in that they need no chemical reagent and in that optimum reaction conditions can easily be obtained by controlling electrode potentials. [Pg.269]


See other pages where Electrogravimetry controlled-potential method is mentioned: [Pg.648]    [Pg.895]    [Pg.967]    [Pg.1091]    [Pg.934]    [Pg.284]    [Pg.1059]    [Pg.1299]   
See also in sourсe #XX -- [ Pg.145 ]




SEARCH



Control methods

Controlled potential

Controlled potential methods

Electrogravimetry

Potential control

© 2024 chempedia.info