Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrodialysis System and Process Design

The efficiency of electrodialysis is determined to a large extent by the properties of the membranes. But it is also affected by the process and system design that determine the limiting current density, the current utilization, the concentration polarization and the overall efficiency and costs [20, 21]. [Pg.96]

The electrod ialysis stack A key element in electrodialysis is the so-called stack, which is a device to hold an array of membranes between the electrodes that the streams being processed are kept separated. A typical electrodialysis stack used in water desalination contains 100-300 cell pairs stacked between the electrodes. The electrode containing cells at both ends of a stack are often rinsed with a separate solution which does not contain Cl- ions to avoid chlorine formation. [Pg.96]

The limiting current density is determined by concentration-polarization effects at the membrane surface in the diluate containing compartment that in turn is determined by the diluate concentration, the compartment design, and the feed-flow velocity. Concentration polarization in electrodialysis is also the result of differences in the transport number of ions in the solution and in the membrane. The transport number of a counterion in an ion-exchange membrane is generally close to 1 and that of the co ion close to 0, while in the solution the transport numbers of anion and cations are not very different. [Pg.97]

The concentration polarization occurring in electrodialysis, that is, the concentration profiles at the membrane surface can be calculated by a mass balance taking into account all fluxes in the boundary layer and the hydrodynamic conditions in the flow channel between the membranes. To a first approximation the salt concentration at the membrane surface can be calculated and related to the current density by applying the so-called Nernst film model, which assumes that the bulk solution between the laminar boundary layers has a uniform concentration, whereas the concentration in the boundary layers changes over the thickness of the boundary layer. However, the concentration at the membrane surface and the boundary layer thickness are constant along the flow channel from the cell entrance to the exit. In a practical electrodialysis stack there will be entrance and exit effects and concentration [Pg.98]

Tis the transport number of the counterion, AC is the concentration difference between the solution in the diluate at the membrane surface and in the bulk, D is the diffusion coefficient, T is the transport number, F is the Faraday constant, z is the charge number, and Az is the boundary layer thickness, the subscript i refers to cations or anions the superscripts d, m and s refer to diluate, membrane and solution, respectively. [Pg.99]


See other pages where Electrodialysis System and Process Design is mentioned: [Pg.96]   


SEARCH



Designs and Systems

Electrodialysis

Electrodialysis system design

Electrodialysis with Bipolar Membrane System and Process Design

© 2024 chempedia.info