Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper electrode potentials

Iron has a negative electrode potential. Copper is positive, -h 0.337 V. Iron dissolves in a copper sulfate solution, yet copper dissolves in a ferric chloride solution. Explain, using E values. See Table 12-1. [Pg.227]

At equilibrium at 298 K the electrode potential of the half-reaction for copper, given approximately by... [Pg.105]

Despite its electrode potential (p. 98), very pure zinc has little or no reaction with dilute acids. If impurities are present, local electrochemical cells are set up (cf the rusting of iron. p. 398) and the zinc reacts readily evolving hydrogen. Amalgamation of zinc with mercury reduces the reactivity by giving uniformity to the surface. Very pure zinc reacts readily with dilute acids if previously coated with copper by adding copper(II) sulphate ... [Pg.417]

Electrorefining. Electrolytic refining is a purification process in which an impure metal anode is dissolved electrochemicaHy in a solution of a salt of the metal to be refined, and then recovered as a pure cathodic deposit. Electrorefining is a more efficient purification process than other chemical methods because of its selectivity. In particular, for metals such as copper, silver, gold, and lead, which exhibit Htfle irreversibHity, the operating electrode potential is close to the reversible potential, and a sharp separation can be accompHshed, both at the anode where more noble metals do not dissolve and at the cathode where more active metals do not deposit. [Pg.175]

Oxidation-reduction potential Because of the interest in bacterial corrosion under anaerobic conditions, the oxidation-reduction situation in the soil was suggested as an indication of expected corrosion rates. The work of Starkey and Wight , McVey , and others led to the development and testing of the so-called redox probe. The probe with platinum electrodes and copper sulphate reference cells has been described as difficult to clean. Hence, results are difficult to reproduce. At the present time this procedure does not seem adapted to use in field tests. Of more importance is the fact that the data obtained by the redox method simply indicate anaerobic situations in the soil. Such data would be effective in predicting anaerobic corrosion by sulphate-reducing bacteria, but would fail to give any information regarding other types of corrosion. [Pg.387]

The electrode potential behaviour of copper in various solutions has been investigated and discussed in considerable detail by Catty and Spooner . According to these workers a large part of the surface of copper electrodes in aerated aqueous solutions is normally covered with a film of cuprous oxide and the electrode potential is usually close to the potential of these film-covered areas. The filmed metal simulates a reversible oxygen electrode at... [Pg.686]

Fig. 19.16 Schematic E — I diagrams of local cell action on stainless steel in CUSO4 + H2SO4 solution showing the effect of metallic copper on corrosion rate. C and A are the open-circuit potentials of the local cathodic and anodic areas and / is the corrosion current. The electrode potentials of a platinised-platinum electrode and metallic copper immersed in the same solution as the stainless steel are indicated by arrows, (a) represents the corrosion of stainless steel in CUSO4 -I- H2 SO4, (b) the rate when copper is introduced into the acid, but is not in contact with the steel, and (c) the rate when copper is in contact with the stainless steel... Fig. 19.16 Schematic E — I diagrams of local cell action on stainless steel in CUSO4 + H2SO4 solution showing the effect of metallic copper on corrosion rate. C and A are the open-circuit potentials of the local cathodic and anodic areas and / is the corrosion current. The electrode potentials of a platinised-platinum electrode and metallic copper immersed in the same solution as the stainless steel are indicated by arrows, (a) represents the corrosion of stainless steel in CUSO4 -I- H2 SO4, (b) the rate when copper is introduced into the acid, but is not in contact with the steel, and (c) the rate when copper is in contact with the stainless steel...
Since the small interfacial potentials at the junctions of the electrodes and copper leads are equal and opposite, they cancel out, and if the liquid junction potential is assumed to be small, or is reduced to a negligible value by using a salt bridge, then equation 20.216 reduces to... [Pg.1240]

When metals are arranged in the order of their standard electrode potentials, the so-called electrochemical series of the metals is obtained. The greater the negative value of the potential, the greater is the tendency of the metal to pass into the ionic state. A metal will normally displace any other metal below it in the series from solutions of its salts. Thus magnesium, aluminium, zinc, or iron will displace copper from solutions of its salts lead will displace copper, mercury, or silver copper will displace silver. [Pg.63]

An interesting application of electrode potentials is to the calculation of the e.m.f. of a voltaic cell. One of the simplest of galvanic cells is the Daniell cell. It consists of a rod of zinc dipping into zinc sulphate solution and a strip of copper in copper sulphate solution the two solutions are generally separated by placing one inside a porous pot and the other in the surrounding vessel. The cell may be represented as ... [Pg.64]

Thus the electrode potential of copper in a 2N solution of its ions is (roughly, since E0 refers to N salt concentration) ... [Pg.476]

Aluminum s low density, wide availability, and corrosion resistance make it ideal for construction and for the aerospace industry. Aluminum is a soft metal, and so it is usually alloyed with copper and silicon for greater strength. Its lightness and good electrical conductivity have also led to its use for overhead power lines, and its negative electrode potential has led to its use in fuel cells. Perhaps one day your automobile will not only be made of aluminum but fueled by it, too. [Pg.719]

The impure copper from either process is refined electrolytically it is made into anodes and plated onto cathodes of pure copper. Other metals may be present in the impure copper and those with highly positive electrode potentials also are reduced. The rare metals—most notably, platinum, silver, and gold—obtained from the anode sludge are sold to recover much of the cost of the electricity used in the electrolysis. [Pg.786]

For any type of nonaqueous electrolyte (nonaqueous solutions, melts, solid electrolytes) we can select suitable reference electrodes, measure the potentials of other electrodes, and set up tables of electrode potentials. The order of the reactions (electrodes) as a rule does not strongly differ between the different media. A strong reducing agent such as lithium will have a more negative potential than a weaker reducing agent such as copper, both in water and in other media. [Pg.50]

If the unknown cell in the Cu-Zn cell is connected to the circuit, the emf measured is the combined potentials of two single electrode potentials for the two metals (zinc and copper) making up the cell, and it is impossible to state from the value of the emf measured what proportion is due either to the zinc, or to the copper. [Pg.635]

The text has so far confined attention to the electrode potential of only one metal and is henceforward extended to two electrodes. Copper continues to be one metal, and the other introduced into the consideration is zinc. If the copper and the zinc electrodes are placed in a common electrolyte holding ions of both metals, Cu2+ and Zn2+, respectively, both electrodes will have an electrode potential, ECn and Zn respectively. [Pg.647]

Considerable practical importance attaches to the fact that the data in Table 6.11 refer to electrode potentials which are thermodynamically reversible. There are electrode processes which are highly irreversible so that the order of ionic displacement indicated by the electromotive series becomes distorted. One condition under which this situation arises is when the dissolving metal passes into the solution as a complex anion, which dissociates to a very small extent and maintains a very low concentration of metallic cations in the solution. This mechanism explains why copper metal dissolves in potassium cyanide solution with the evolution of hydrogen. The copper in the solution is present almost entirely as cuprocyanide anions [Cu(CN)4]3, the dissociation of which by the process... [Pg.656]

It is seen from the above values of electrode potentials that copper is associated with the highest value, which signifies that it has the highest affinity for electrons it will thus be electrodeposited in preference to the other metals. Finally, the reactions that take place at the anode and at the cathode are ... [Pg.691]

Thus, co-deposition of silver and copper can take place only when the silver concentration in the electrolyte falls to a very low level. This clearly indicates that the electrolytic process can, instead, be used for separating copper from silver. When both silver and copper ions are present, the initial deposition will mainly be of silver and the deposition of copper will take place only when the concentration of silver becomes very low. Another example worth considering here is the co-deposition of copper and zinc. Under normal conditions, the co-deposition of copper and zinc from an electrolyte containing copper and zinc sulfates is not feasible because of the large difference in the electrode potentials. If, however, an excess of alkali cyanides is added to the solution, both the metals form complex cyanides the cuprocyanide complex is much more stable than the zinc cyanide complex and thus the concentration of the free copper ions available for deposition is considerably reduced. As a result of this, the deposition potentials for copper and zinc become very close and their co-deposition can take place to form alloys. [Pg.694]

Therefore, criteria in the selection of an electrode reaction for mass-transfer studies are (1) sufficient difference between the standard electrode potential of the reaction that serves as a source or sink for mass transport and that of the succeeding reaction (e.g., hydrogen evolution following copper deposition in acidified solution), and (2) a sufficiently low surface overpotential and rate of increase of surface overpotential with current density, so that, as the current is increased, the potential will not reach the level required by the succeeding electrode process (e.g., H2 evolution) before the development of the limiting-current plateau is complete. [Pg.225]

In many cases mass transfer is not the sole cause of unsteady-state limiting currents, observed when a fast current ramp is imposed on an elongated electrode. In copper deposition, in particular, as a result of the appreciable surface overpotential (see Section III,C) and the ohmic potential drop between electrodes, the current distribution below the limiting current is very different from that at the true steady-state limiting current. [Pg.245]

At high [Cu(II)] and low [H2A] initial concentrations, the Pt electrode potential, used to follow the chemical process, increased monotonously. When both species were present at high initial concentrations, a monotonous decrease was observed. Various non-monotonic transient regimes were found at approximate initial concentrations of [Cu(II)] 10-4 M and [H2A] 10-4 M. Thus, the batch experiments properly illustrate that the system is sensitive to variations of the initial concentrations of ascorbic acid and copper(II) ion, and the observations can be indicative of a transient bi-stability. [Pg.449]


See other pages where Copper electrode potentials is mentioned: [Pg.2751]    [Pg.110]    [Pg.175]    [Pg.94]    [Pg.125]    [Pg.47]    [Pg.43]    [Pg.309]    [Pg.508]    [Pg.118]    [Pg.267]    [Pg.43]    [Pg.253]    [Pg.544]    [Pg.646]    [Pg.647]    [Pg.652]    [Pg.717]    [Pg.200]    [Pg.219]    [Pg.322]    [Pg.596]    [Pg.143]    [Pg.292]    [Pg.171]    [Pg.173]    [Pg.189]   
See also in sourсe #XX -- [ Pg.4 , Pg.42 ]

See also in sourсe #XX -- [ Pg.4 , Pg.42 ]




SEARCH



Copper electrode potential relationships

Copper electrodes

Copper potential

Copper standard electrode potential

© 2024 chempedia.info