Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical methods pulsed

Reisee et al. [52] first described a pulsed electrodeposition and pulsed out-of-phase ultrasound to prepare copper nanopowders. Such an electrochemical method has since then employed to synthesize a variety of nanoparticles. Mancier et al. [53] have prepared Cu20 nanopowders (8 nm) with very high specific surface area of 2,000 m2/g by pulsed ultrasound assisted-electrochemistry. [Pg.203]

The one-electron reduction potentials, (E°) for the phenoxyl-phenolate and phenoxyl-phenol couples in water (pH 2-13.5) have been measured by kinetic [pulse radiolysis (41)] and electrochemical methods (cyclic voltammetry). Table I summarizes some important results (41-50). The effect of substituents in the para position relative to the OH group has been studied in some detail. Methyl, methoxy, and hydroxy substituents decrease the redox potentials making the phe-noxyls more easily accessible while acetyls and carboxyls increase these values (42). Merenyi and co-workers (49) found a linear Hammett plot of log K = E°l0.059 versus Op values of substituents (the inductive Hammett parameter) in the 4 position, where E° in volts is the one-electron reduction potential of 4-substituted phenoxyls. They also reported the bond dissociation energies, D(O-H) (and electron affinities), of these phenols that span the range 75.5 kcal mol 1 for 4-amino-... [Pg.157]

The oxidation potentials of diphenyl selenides ° and diphenyl tellurides have been measured by electrochemical methods, as well as by pulse radiolysis. Pulse electrolysis was used to determine E° values for diphenylsulfide (84), diphenylselenide (85), and diphenyltelluride (23). In each case, equilibrium... [Pg.118]

Development of the industrial process for electrochemical conversion of acrylonitrile to adiponitrile led to extensive investigation into the mechanism of the dimerization process. Reactions of acrylonitrile radical-anion are too fast for investigation but the dimerization step, for a number of more amenable substrates, has been investigated in aprotic solvents by electrochemical techniques. Pulse-radiolysis methods have also been used to study reactions in aqueous media. [Pg.60]

A third important reaction of aromatic radical-cations is carbon-carbon bond formation with a further aromatic substrate. This reaction is limited to the oxidation in acetonitrile of substrates with electrondonating substituents. Radical-cations from benzene, naphthalene and anthracene form a-complexes but do not form a a-bonded reaction intermediate. Tlie dimerization reaction has been investigated both by pulse-radiolysis [22] in water and by electrochemical methods [27] in acetoni-... [Pg.191]

Square wave voltammetry achieves increased sensitivity and a derivative peak shape by applying a square wave superimposed on a staircase voltage ramp. With each cathodic pulse, there is a rush of analyte to be reduced at the electrode surface. During the anodic pulse, reduced analyte is reoxidized. The voltammogram is the difference between the cathodic and the anodic currents. Square wave voltammetry permits fast, real-time measurements not possible with other electrochemical methods. [Pg.372]

The use of polarographic assays for the determination of drugs in blood is the most demanding on the detection limitations of the technique. Differential pulse polarography, stripping voltammetry, and LCEC are the only electrochemical methods currently available for routine determination of drugs below 1.0 ng/mL of blood. [Pg.804]

Faraggi M, Klapper MH (1993) Reduction potentials determination of some biochemically important free radicals. Pulse radiolysis and electrochemical methods. J Chim Phys 90 711-744 Faraggi M, Klapper MH (1994) One electron oxidation of guanine and 2 -deoxyguanosine by the azide radical in alkaline solutions. J Chim Phys 91 1062-1069 Faraggi M, Broitman F, Trent JB, Klapper MH (1996) One-electron oxidation reactions of some purine and pyrimidine bases in aqueous solutions. Electrochemical and pulse radiolysis studies. J Phys Chem 100 14751-14761... [Pg.317]

Electrochemical interconversion of homo- and heteronuclear gold cluster compounds remains an area that has received scant attention, despite the potential for changing the electron count and hence the metal cage geometries of these clusters by electrochemical methods. The electrochemical redox reactions of [Pt(AuPPh3)8]2+ have been studied, using pulse, differential pulse, and cyclic voltammetric techniques (124, 242) and two reversible, one-electron reduction steps have been... [Pg.338]

The extensive determination of fragmentation rates of aryl halide radical anions, due to Saveant and coworkers15a by electrochemical methods, indicates that they range from values of 10-2s-1 for nitro-substituted phenyl halides up to 1010 s-1 for />-cyanophenyl halides. These values are in agreement with measurements by pulse radiolysis42. The fragmentation rates for unsubstituted phenyl halides are too high to be measured even by electrochemical techniques. Besides, 1-bromo- and 1-iodoanthraquinone radical anions have been shown to dissociate from their photoexcited state (Section V. D). [Pg.1400]

Refs. [i] Bard AJ Faulkner LR (2001) Electrochemical methods. Wiley, New York, pp 11-18 [ii] Oldham HB, Myland JC (1994) Fundamentals of electrochemical science. Academic Press, San Diego, pp 328-354 [iii] lnzelt G (2002) Kinetics of electrochemical reactions. In ScholzF (ed) Electroanalytical methods. Springer, Berlin, pp 45, 139 [iv] Sto-jek Z (2002) Pulse voltammetry. In Scholz F (ed) Electroanalytical methods. Springer, Berlin, pp 100,109 [v] Parsons R (1974) Pure Appl Chem 37 503 [vi] Trasatti S, Petrii OA (1991) Pure Appl Chem 63 711 [vii] Sluyters-Rehbach M (1994) Pure Appl Chem 66 1831... [Pg.90]

Refs. [i] Bard A), Faulkner LR (2001) Electrochemical methods, 2"d edn. Wiley, New York, pp 278-283 [ii] Stojek Z (2002) Pulse voltammetry. In Scholz F (ed) Electroanalytical methods. Springer, Berlin... [Pg.456]

Potential step methods have emerged as valuable electrochemical methods due to the highly sensitive nature of the technique. The waveform employed in potential step methods, also referred to as pulsed methods, have some advantages over potential sweep methods. The main advantage is that the steplike waveform can discriminate and separate the capacitive current versus the faradaic current, the current due to the reduction or oxidation undergone by the analyte, increasing signal to noise. Capacitive versus faradaic current discrimination is the basis for all of the pulsed techniques. The rate of decay of the capacitive current and the faradaic current is not the same. The capacitive current has an exponential decay whereas the faradaic current decays as a function of t Since the rate of decay of the capacitive current is much... [Pg.6463]

SERS active structures can be prepared by a variety of chemical physical and electrochemical methods described in Sect. 4.1. The chemical preparation of colloidal nanoparticles is frequently used (Sect. 4.1.1). An interesting electrochemical preparation procedure is the so-called double-pulse technique. This method is an electrochemical tool for controlling the metal deposition with respect to particle size and particle density (Sect. 4.1.2). [Pg.170]

As explained earlier, in transient electrochemical methods an electrical perturbation (potential, current, charge, and so on) is imposed at the working electrode during a time period 0 (usually less than 10 s) short enough for the diffusion layer 8 (2D0) to be smaller than the convection layer (S onv imposed by natural convection. Thus the electrochemical response of the system investigated depends on the exact perturbation as well as on the elapsed time. This duality is apparent when one considers a double-pulse potentiostatic perturbation applied to the electrode as in the double-step chronoampero-metric method. [Pg.85]

Mechanistic studies of one-electron oxidations or reductions of Cr111 porphyrinato complexes have been performed by pulse-radiolysis and electrochemical methods.500,501 The results (summarized in Equations (v)-(vii), Scheme 13) show that the reduction process can be directed either... [Pg.345]


See other pages where Electrochemical methods pulsed is mentioned: [Pg.503]    [Pg.230]    [Pg.170]    [Pg.407]    [Pg.523]    [Pg.174]    [Pg.117]    [Pg.1060]    [Pg.147]    [Pg.131]    [Pg.232]    [Pg.192]    [Pg.137]    [Pg.73]    [Pg.219]    [Pg.282]    [Pg.155]    [Pg.124]    [Pg.537]    [Pg.117]    [Pg.145]    [Pg.57]    [Pg.6454]    [Pg.9]    [Pg.401]    [Pg.908]    [Pg.3196]    [Pg.2895]    [Pg.619]    [Pg.235]    [Pg.155]   
See also in sourсe #XX -- [ Pg.209 ]




SEARCH



Electrochemical methods

Electrochemical methods differential pulse voltammetry

Electrochemical methods pulsed amperometric detection

Pulsed Methods

© 2024 chempedia.info