Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical cell standard potential

Electrochemical methods covered in this chapter include poten-tiometry, coulometry, and voltammetry. Potentiometric methods are based on the measurement of an electrochemical cell s potential when only a negligible current is allowed to flow, fn principle the Nernst equation can be used to calculate the concentration of species in the electrochemical cell by measuring its potential and solving the Nernst equation the presence of liquid junction potentials, however, necessitates the use of an external standardization or the use of standard additions. [Pg.532]

This model was first used102 to investigate the dependence of the potential of zero charge on the metal. Only the bulk-metal electron density changes from metal to metal. For a metal electrode connected to a standard electrode to form an electrochemical cell, the potential of zero charge is given by Eq. (2) or, for a metal M,... [Pg.78]

If a solution forms part of an electrochemical cell, the potential of the cell, the current flowing through it and its resistance are all determined by the chemical composition of the solution. Quantitative and qualitative information can thus be obtained by measuring one or more of these electrical properties under controlled conditions. Direct measurements can be made in which sample solutions are compared with standards alternatively, the changes in an electrical property during the course of a titration can be followed to enable the equivalence point to be detected. Before considering the individual electrochemical techniques, some fundamental aspects of electrochemistry will be summarized in this section. [Pg.228]

While the redox titration method is potentiometric, the spectroelectrochemistry method is potentiostatic [99]. In this method, the protein solution is introduced into an optically transparent thin layer electrochemical cell. The potential of the transparent electrode is held constant until the ratio of the oxidized to reduced forms of the protein attains equilibrium, according to the Nemst equation. The oxidation-reduction state of the protein is determined by directly measuring the spectra through the tranparent electrode. In this method, as in the redox titration method, the spectral characterization of redox species is required. A series of potentials are sequentially potentiostated so that different oxidized/reduced ratios are obtained. The data is then adjusted to the Nemst equation in order to calculate the standard redox potential of the proteic species. Errors in redox potentials estimated with this method may be in the order of 3 mV. [Pg.72]

Because of thermodynamic and electrochemical conventions, standard potentials are defined in the direction of reduction, independently of the respective chemical stabilities of the molecules involved. Thus for the oxidation of toluene to its cation radical, E° refers to the reduction of the highly unstable cation radical into the highly stable toluene. To overcome such a priori chemical nonsence, E is frequently designated as the standard oxidation potential of toluene for example. However, such a term should not be accepted according to canonical rules because it formally implies that the cell now operates in a driven mode, that is, is connected to an external power supply [19]. Thus in this chapter we prefer to use the denomination standard reduction potentials, rather than the usual temi standard potential, as a reminder of the E° definition, although such as expression is basically a pleonasm. [Pg.9]

Each electrode reaction, anode and cathode, or half-cell reaction has an associated energy level or electrical potential (volts) associated with it. Values of the standard equilibrium electrode reduction potentials E° at unit activity and 25°C may be obtained from the literature (de Bethune and Swendeman Loud, Encyclopedia of Electrochemistry, Van Nostrand Reinhold, 1964). The overall electrochemical cell equilibrium potential either can be obtained from AG values or is equal to the cathode half-cell potential minus the anode half-cell potential, as shown above. [Pg.32]

The final step in calculating electrochemical cell potential is to combine the copper and zinc half-cells as a voltaic cell. This means calculating the voltaic cells standard potential using the following formula. [Pg.714]

Substituting known values for the standard-state reduction potentials (see Appendix 3D) and the concentrations of Ag+ and gives a potential for the electrochemical cell in Figure 11.5 of... [Pg.469]

Despite the apparent ease of determining an analyte s concentration using the Nernst equation, several problems make this approach impractical. One problem is that standard-state potentials are temperature-dependent, and most values listed in reference tables are for a temperature of 25 °C. This difficulty can be overcome by maintaining the electrochemical cell at a temperature of 25 °C or by measuring the standard-state potential at the desired temperature. [Pg.470]

Another troublesome aspect of the reactivity ratios is the fact that they must be determined and reported as a pair. It would clearly simplify things if it were possible to specify one or two general parameters for each monomer which would correctly represent its contribution to all reactivity ratios. Combined with the analogous parameters for its comonomer, the values rj and t2 could then be evaluated. This situation parallels the standard potential of electrochemical cells which we are able to describe as the sum of potential contributions from each of the electrodes that comprise the cell. With x possible electrodes, there are x(x - l)/2 possible electrode combinations. If x = 50, there are 1225 possible cells, but these can be described by only 50 electrode potentials. A dramatic data reduction is accomplished by this device. Precisely the same proliferation of combinations exists for monomer combinations. It would simplify things if a method were available for data reduction such as that used in electrochemistry. [Pg.444]

The question arises as to which metal is dissolved, and which one is deposited, when combined in an electrochemical cell. The electrochemical series indicates how easily a metal is oxidized or its ions are reduced, i.e., converted into positively charged ions or metal atoms respectively. The standard potential serves for the comparison of different metals. [Pg.6]

We can use the electrochemical series to predict the thermodynamic tendency for a reaction to take place under standard conditions. A cell reaction that is spontaneous under standard conditions (that is, has K > 1) has AG° < 0 and therefore the corresponding cell has E° > 0. The standard emf is positive when ER° > Et that is, when the standard potential for the reduction half-reaction is more positive than that for the oxidation half-reaction. [Pg.623]

Electrochemical cells can be constructed using an almost limitless combination of electrodes and solutions, and each combination generates a specific potential. Keeping track of the electrical potentials of all cells under all possible situations would be extremely tedious without a set of standard reference conditions. By definition, the standard electrical potential is the potential developed by a cell In which all chemical species are present under standard thermodynamic conditions. Recall that standard conditions for thermodynamic properties include concentrations of 1 M for solutes in solution and pressures of 1 bar for gases. Chemists use the same standard conditions for electrochemical properties. As in thermodynamics, standard conditions are designated with a superscript °. A standard electrical potential is designated E °. [Pg.1381]

This is a quantitative problem, so we follow the standard strategy. The problem asks about an actual potential under nonstandard conditions. Before we determine the potential, we must visualize the electrochemical cell and determine the balanced chemical reaction. The half-reactions are given in the problem. To obtain the balanced equation, reverse the direction of the reduction half-reaction with the... [Pg.1394]

Ab initio atomic simulations are computationally demanding present day computers and theoretical methods allow simulations at the quantum mechanical level of hundreds of atoms. Since an electrochemical cell contains an astronomical number of atoms, however, simplifications are essential. It is therefore obvious that it is necessary to study the half-cell reactions one by one. This, in turn, implies that a reference electrode with a known fixed potential is needed. For this purpose, a theoretical counterpart to the standard hydrogen electrode (SHE) has been established [Nprskov et al., 2004]. We will describe this model in some detail below. [Pg.58]

The positive value of the standard voltage obtained in the example indicates that the cell reaction shown is spontaneous. Thus, the standard potentials in Table 6.11 can be used to predict whether a particular reaction will occur, or not. The advantage of Table 6.11 is that it provides quantitative as well as qualitative information. It not only conveys that nickel is a stronger oxidizing agent than silver (because nickel is positioned below silver in the electrochemical series), but it also conveys how much stronger, in terms of the cell emf of+1.05 V. [Pg.651]

Oxygen electrode. In principle, a classical oxygen electrode in a liquid electrolyte would be possible if an electrode material were known on the surface of which the redox system 02/0H is electrochemically reversible however, Luther26 measured its standard potential from the following cell without a liquid junction ... [Pg.59]


See other pages where Electrochemical cell standard potential is mentioned: [Pg.846]    [Pg.34]    [Pg.354]    [Pg.33]    [Pg.5]    [Pg.1030]    [Pg.797]    [Pg.1926]    [Pg.491]    [Pg.494]    [Pg.526]    [Pg.348]    [Pg.656]    [Pg.662]    [Pg.55]    [Pg.183]    [Pg.240]    [Pg.268]    [Pg.400]    [Pg.646]    [Pg.642]    [Pg.827]    [Pg.98]    [Pg.348]    [Pg.16]   
See also in sourсe #XX -- [ Pg.870 , Pg.871 , Pg.872 , Pg.873 ]




SEARCH



Cell potentials

Cells, electrochemical standard

Electrochemical cell

Electrochemical potential

Electrochemical, cells potential

Potential standard

Potentials, standardization

Standard cell

Standard cell potential

Standard electrochemical potential

© 2024 chempedia.info