Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrocatalysis reaction engineering

The discussion of a number of topics in electrocatalysis, including adsorption phenomena, surface reaction mechanisms and investigation techniques, electrocatalytic activity and selectivity concepts, and reaction engineering factors, may seem at first too diverse. We believe, however, that fundamental principles cannot be divorced from their natural counterpart, praxis. Here, we attempt to establish ties between basic and applied electrocatalysis and with their conventional similes, catalysis, surface physics (and spectroscopy) and reaction engineering. By taking a vitae parallelae perspective, we hope that a synthetic analysis of the present state of the art emerges. [Pg.321]

In the present edition some space is dedicated to special topics such as electrocatalysis, photocatalysis, asymmetric catalysis, phase-transfer catalysis, environmental catalysis, and fine chemicals manufacture. On the basis of fundamental reaction engineering equations, examples for calculation and modeling of catalysis reactors are given with the easy-to-learn PC program POLYMATH. Well over 170 exercises help die reader to test and consolidate the gained knowledge. [Pg.518]

At IREQ, besides the participation in the field tests run by the engineers of Hydro-Quebec (12), the main effort has been to tackle fundamental problems in the field of electrocatalysis (18-22) and of anodic oxidation of different potential fuels (23-26). A careful and extensive study of the electrochemical properties of the tungsten bronze has been carried out (18-20) the reported activity of these materials in acid media for the oxygen reduction could not be reproduced and this claim by other workers has been traced back to some platinum impurities in the electrodes. Some novel techniques in the area of electrode preparation are also under study (21,22) the metallic deposition of certain metals on oriented graphite show some interesting catalytic features for the oxygen reduction and also for the oxygen evolution reaction. [Pg.318]

Refs. [i] Frumkin A (1933) Z phys Chem A 164 121 [ii] Frumkin AN (1961) Hydrogen overvoltage and adsorption phenomena, part 1, mercury. In Delahay P (ed) Advances in electrochemistry and electrochemical engineering, vol 1. Interscience, New York [iii] Frumkin AN, Petrii OA, Nikolaeva-Ferdorovich NV (1963) Electrochim Acta 8 177 [iv] Frumkin AN, Nikolaeva-Fedorovich NV, Berezina NP, Keis KhE (1975) J Electroanal Chem 58 189 [v] Fawcett WR (1998) Double layer effects in the electrode kinetics of electron and ion transfer reactions. In Lipkowski J, RossPN (eds) Electrocatalysis. Wiley-VCH, New York, p 323... [Pg.285]

Extended Reaction Zone Catalyst Supports Synergy between Electrocatalysis and Electrode Engineering... [Pg.253]


See other pages where Electrocatalysis reaction engineering is mentioned: [Pg.203]    [Pg.156]    [Pg.228]    [Pg.87]    [Pg.168]    [Pg.302]    [Pg.475]    [Pg.1591]    [Pg.223]    [Pg.375]    [Pg.460]    [Pg.562]    [Pg.261]    [Pg.813]    [Pg.90]    [Pg.302]    [Pg.182]   
See also in sourсe #XX -- [ Pg.309 , Pg.310 , Pg.311 , Pg.312 , Pg.313 , Pg.314 , Pg.315 , Pg.316 , Pg.317 , Pg.318 , Pg.319 , Pg.320 ]




SEARCH



Electrocatalysis

Electrocatalysis reactions

Reaction engineering

© 2024 chempedia.info