Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrical symbols

F) electrical symbol for np rectifier shown above (arrow follows hole current direction)... [Pg.526]

I Figure 1Z.8 Examples of electrical symbols in a house plan. [Pg.327]

Electrical Symbols AAVv— Fixed resistor Photo resistor — Variable r istor +1 -. .-N> h- j, l ode Ci acitor r 7 vm K <1 Meter Speaker Solar cell Single-phase motor... [Pg.486]

Ampere-hour A imit of electricity (symbol A h) equal to the current flowing past any point in a circuit for 1 h at a constant amperage. [Pg.736]

The dipole moment (strictly, the electric dipole moment) of a molecule is a measure of the charge asymmetry and is usually denoted by the symbol /r. [Pg.97]

Figure 9.24 shows part of the laser Stark spectrum of the bent triatomic molecule FNO obtained with a CO infrared laser operating at 1837.430 cm All the transitions shown are Stark components of the rotational line of the Ig vibrational transition, where Vj is the N-F stretching vibration. The rotational symbolism is that for a symmetric rotor (to which FNO approximates) for which q implies that AA = 0, P implies that A/ = — 1 and the numbers indicate that K" = 7 and J" = 8 (see Section 6.2.4.2). In an electric field each J level is split into (J + 1) components (see Section 5.2.3), each specified by its value of Mj. The selection mle when the radiation is polarized perpendicular to the field (as here) is AMj = 1. Eight of the resulting Stark components are shown. [Pg.369]

Symbol Nominal composition, % Thermal conductivity, W/(m-K) Electrical resistivity, fiO-cm Yield bend fatigue strength, MPa ... [Pg.531]

Sodium [7440-23-5] Na, an alkali metal, is the second element of Group 1 (lA) of the Periodic Table, atomic wt 22.9898. The chemical symbol is derived from the Latin natrium. Commercial iaterest ia the metal derives from its high chemical reactivity, low melting poiat, high boiling poiat, good thermal and electrical conductivity, and high value ia use. [Pg.161]

The systems of interest in chemical technology are usually comprised of fluids not appreciably influenced by surface, gravitational, electrical, or magnetic effects. For such homogeneous fluids, molar or specific volume, V, is observed to be a function of temperature, T, pressure, P, and composition. This observation leads to the basic postulate that macroscopic properties of homogeneous PPIT systems at internal equiUbrium can be expressed as functions of temperature, pressure, and composition only. Thus the internal energy and the entropy are functions of temperature, pressure, and composition. These molar or unit mass properties, represented by the symbols U, and S, are independent of system size and are intensive. Total system properties, J and S do depend on system size and are extensive. Thus, if the system contains n moles of fluid, = nAf, where Af is a molar property. Temperature... [Pg.486]

Figure 6.15 Circuit symbols and electrical representation of a basic triode or power transistor (BJT)... Figure 6.15 Circuit symbols and electrical representation of a basic triode or power transistor (BJT)...
Ox and Red are general symbols for oxidation and reduction media respectively, and n and (n-z) indicate their numerical charge (see Section 2.2.2). Where there is no electrochemical redox reaction [Eq. (2-9)], the corrosion rate according to Eq. (2-4) is zero because of Eq. (2-8). This is roughly the case with passive metals whose surface films are electrical insulators (e.g., A1 and Ti). Equation (2-8) does not take into account the possibility of electrons being diverted through a conductor. In this case the equilibrium... [Pg.33]

The term resistance refers to the property of any object or substance to resist or oppose the flow of an electrical current. The unit of resistance is the ohm. The abbreviation for electric resistance is R and the symbol for ohms is the Greek letter omega, Q. For certain electrical calculations the reciprocal of resistance is used, 1/R, which is termed conductance, G. The unit of conductance is the mho, or ohm spelled backward, and the symbol is an inverted omega. [Pg.5]

Table 8-2 lists several physical properties pertinent to our concern with the effects of solvents on rates for 40 common solvents. The dielectric constant e is a measure of the ability of the solvent to separate charges it is defined as the ratio of the electric permittivity of the solvent to the permittivity of the vacuum. (Because physicists use the symbol e for permittivity, some authors use D for dielectric constant.) Evidently e is dimensionless. The dielectric constant is the property most often associated with the polarity of a solvent in Table 8-2 the solvents are listed in order of increasing dielectric constant, and it is evident that, with a few exceptions, this ranking accords fairly well with chemical intuition. The dielectric constant is a bulk property. [Pg.389]

We often say that an electron is a spin-1/2 particle. Many nuclei also have a corresponding internal angular momentum which we refer to as nuclear spin, and we use the symbol I to represent the vector. The nuclear spin quantum number I is not restricted to the value of 1/2 it can have both integral and halfintegral values depending on the particular isotope of a particular element. All nuclei for which 7 1 also posses a nuclear quadrupole moment. It is usually given the symbol Qn and it is related to the nuclear charge density Pn(t) in much the same way as the electric quadrupole discussed earlier ... [Pg.277]

The symbols 5+ and 5- indicate polarity of the two ends or poles of the electrically neutral molecule. Such a polar molecule constitutes a permanent dipole, i.e., two equal and opposite charges (e) separated by a distance (d) in space. A quantitative measure of the polarity of a molecule is the dipole moment (p in Debye units), which is defined as the product of the charge (e in electrostatic units) and the distance (d in cm). [Pg.298]

Actually, then, by our symbol jjU we are representing not an atom, but a nucleus. Our equation is written in terms of nuclei and particles associated with them. This nuclear equation tells us nothing about what compound ol uranium was bombarded with neutrons or what compound of barium is formed. We are summarizing only the nuclear changes. During the nuclear change there is much disruption of other atoms because of the tremendous amounts of energy liberated. We do not know in detail what happens but eventually we return to electrically neutral substances (chemical compounds) and the neutrons are consumed by other nuclei. [Pg.121]

Ejectors, steam/water requirements, 371 Electrical charge on tanks, 537 Electrical precipaiaiors, 280 Applications, 280, 282 Concept of operation, 281 Emergency relief, 450 Engineering, plant development, 46 Equipment symbols, 19—2 L Abbreviations, 25 Instruments, 21, 26. 29 Piping, 22 Valve codes, 26 Equivalent feel (flow), 86 Estimated design calculation time,... [Pg.627]

Crystal-field theory (CFT) was constructed as the first theoretical model to account for these spectral differences. Its central idea is simple in the extreme. In free atoms and ions, all electrons, but for our interests particularly the outer or non-core electrons, are subject to three main energetic constraints a) they possess kinetic energy, b) they are attracted to the nucleus and c) they repel one another. (We shall put that a little more exactly, and symbolically, later). Within the environment of other ions, as for example within the lattice of a crystal, those electrons are expected to be subject also to one further constraint. Namely, they will be affected by the non-spherical electric field established by the surrounding ions. That electric field was called the crystalline field , but we now simply call it the crystal field . Since we are almost exclusively concerned with the spectral and other properties of positively charged transition-metal ions surrounded by anions of the lattice, the effect of the crystal field is to repel the electrons. [Pg.27]


See other pages where Electrical symbols is mentioned: [Pg.390]    [Pg.574]    [Pg.1467]    [Pg.228]    [Pg.328]    [Pg.326]    [Pg.327]    [Pg.485]    [Pg.390]    [Pg.574]    [Pg.1467]    [Pg.228]    [Pg.328]    [Pg.326]    [Pg.327]    [Pg.485]    [Pg.1266]    [Pg.6]    [Pg.199]    [Pg.665]    [Pg.21]    [Pg.307]    [Pg.377]    [Pg.114]    [Pg.121]    [Pg.390]    [Pg.400]    [Pg.1221]    [Pg.76]    [Pg.78]    [Pg.24]    [Pg.8]    [Pg.4]    [Pg.748]   
See also in sourсe #XX -- [ Pg.328 , Pg.422 , Pg.423 ]




SEARCH



Electrical installation symbols

© 2024 chempedia.info