Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrical properties coefficients

Some electric properties of molecules are described in section Al.5.2.2 because the coefficients of the powers of Mr turn out to be related to them. The electrostatic, mduction and dispersion energies are considered m turn in section Al.5.2.3, section Al.5.2.4 and section Al.5.2.5, respectively. [Pg.187]

It resembles polytetrafiuoroethylene and fiuorinated ethylene propylene in its chemical resistance, electrical properties, and coefficient of friction. Its strength, hardness, and wear resistance are about equal to the former plastic and superior to that of the latter at temperatures above 150°C. [Pg.1016]

Electrical Properties at Low Temperatures The eleciiical resistivity of most pure metalhc elements at ambient and moderately low temperatures is approximately proportional to the absolute temperature. At very low temperatures, however, the resistivity (with the exception of superconductors) approaches a residual value almost independent of temperature. Alloys, on the other hand, have resistivities much higher than those of their constituent elements and resistance-temperature coefficients that are quite low. The electrical resistivity of alloys as a consequence is largely independent of temperature and may often be of the same magnitude as the room temperature value. [Pg.1127]

Basic physical properties of sulfur, selenium, and tellurium are indicated in Table 1.3. Downward the sulfur sub-group, the metallic character increases from sulfur to polonium, so that whereas there exist various non-metallic allotropic states of elementary sulfur, only one allotropic form of selenium is (semi)metallic, and the (semi)metallic form of tellurium is the most common for this element. Polonium is a typical metal. Physically, this trend is reflected in the electrical properties of the elements oxygen and sulfur are insulators, selenium and tellurium behave as semiconductors, and polonium is a typical metallic conductor. The temperature coefficient of resistivity for S, Se, and Te is negative, which is usually considered... [Pg.7]

Model 1 is linear in the coefficients, and model 2 is nonlinear in the coefficients. The mathematical structure of model 2 has a fundamental basis that takes into account the physical characteristics of the particulate matter, including particle size and electrical properties, but we do not have the space to derive the equation here. [Pg.42]

Good thermo-mechanical, chemical and electrical properties rigidity gamma irradiation resistance UHF transparency good creep resistance and fatigue behaviour low moisture uptake low shrinkage heat behaviour fire resistance low coefficient of thermal expansion. [Pg.782]

Liquid crystal polymers (LCP) are polymers that exhibit liquid crystal characteristics either in solution (lyotropic liquid crystal) or in the melt (thermotropic liquid crystal) [Ballauf, 1989 Finkelmann, 1987 Morgan et al., 1987]. We need to define the liquid crystal state before proceeding. Crystalline solids have three-dimensional, long-range ordering of molecules. The molecules are said to be ordered or oriented with respect to their centers of mass and their molecular axes. The physical properties (e.g., refractive index, electrical conductivity, coefficient of thermal expansion) of a wide variety of crystalline substances vary in different directions. Such substances are referred to as anisotropic substances. Substances that have the same properties in all directions are referred to as isotropic substances. For example, liquids that possess no long-range molecular order in any dimension are described as isotropic. [Pg.157]

Composite-based PTC thermistors are potentially more economical. These devices are based on a combination of a conductor in a semicrystalline polymer—for example, carbon black in polyethylene. Other fillers include copper, iron, and silver. Important filler parameters in addition to conductivity include particle size, distribution, morphology, surface energy, oxidation state, and thermal expansion coefficient. Important polymer matrix characteristics in addition to conductivity include the glass transition temperature, Tg, and thermal expansion coefficient. Interfacial effects are extremely important in these materials and can influence the ultimate electrical properties of the composite. [Pg.595]

The state of polarization, and hence the electrical properties, responds to changes in temperature in several ways. Within the Bom-Oppenheimer approximation, the motion of electrons and atoms can be decoupled, and the atomic motions in the crystalline solid treated as thermally activated vibrations. These atomic vibrations give rise to the thermal expansion of the lattice itself, which can be measured independendy. The electronic motions are assumed to be rapidly equilibrated in the state defined by the temperature and electric field. At lower temperatures, the quantization of vibrational states can be significant, as manifested in such properties as thermal expansion and heat capacity. In polymer crystals quantum mechanical effects can be important even at room temperature. For example, the magnitude of the negative axial thermal expansion coefficient in polyethylene is a direct result of the quantum mechanical nature of the heat capacity at room temperature." At still higher temperatures, near a phase transition, e.g., the assumption of stricdy vibrational dynamics of atoms is no... [Pg.193]


See other pages where Electrical properties coefficients is mentioned: [Pg.323]    [Pg.531]    [Pg.531]    [Pg.304]    [Pg.221]    [Pg.629]    [Pg.540]    [Pg.345]    [Pg.307]    [Pg.46]    [Pg.123]    [Pg.16]    [Pg.287]    [Pg.161]    [Pg.390]    [Pg.399]    [Pg.399]    [Pg.473]    [Pg.474]    [Pg.547]    [Pg.566]    [Pg.566]    [Pg.585]    [Pg.604]    [Pg.614]    [Pg.615]    [Pg.625]    [Pg.642]    [Pg.644]    [Pg.650]    [Pg.64]    [Pg.35]    [Pg.147]    [Pg.152]    [Pg.194]   
See also in sourсe #XX -- [ Pg.327 ]




SEARCH



Electric coefficient

© 2024 chempedia.info