Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrical interfacial layer potentials

The history of development of ideas concerning the electrical interfacial layer (EIL) originates in the mercury electrode phenomena. This concept was later applied and adapted to the metal oxide aqueous interface. The fundamental difference lies in the fact that the potential of a metal electrode is determined by an applied source of electricity, while the surface of an oxide is charged due to interactions and accumulation of ionic species at the interface. Even the simple situation at a metal oxide aqueous interface requires a relatively complicated picture of the EIL. Several different assumptions are in use. Two... [Pg.859]

It could be concluded that different assumed structures of electrical interfacial layer were not distinguished by the applied procedure. It is clear that another data are necessary for that purpose. One way would be to introduce simultaneous electrokinetic measurements and assume relationship between electrokinetic potential and the potential at the onset of diffuse layer. [Pg.874]

IHP) (the Helmholtz condenser formula is used in connection with it), located at the surface of the layer of Stem adsorbed ions, and an outer Helmholtz plane (OHP), located on the plane of centers of the next layer of ions marking the beginning of the diffuse layer. These planes, marked IHP and OHP in Fig. V-3 are merely planes of average electrical property the actual local potentials, if they could be measured, must vary wildly between locations where there is an adsorbed ion and places where only water resides on the surface. For liquid surfaces, discussed in Section V-7C, the interface will not be smooth due to thermal waves (Section IV-3). Sweeney and co-workers applied gradient theory (see Chapter III) to model the electric double layer and interfacial tension of a hydrocarbon-aqueous electrolyte interface [27]. [Pg.179]

In the above we have assumed that no other forces than the electrical are acting at the surface of separation. In general, there will be the capillary forces as well, and we have to take account of the influence of the electrical double layer in considering the adsorption of an electrolyte. If w is the area of the surface, o the interfacial tension, e the charge per unit area, and E the difference of potential, we shall have ... [Pg.473]

Previously, we have proposed that SFG intensity due to interfacial water at quartz/ water interfaces reflects the number of oriented water molecules within the electric double layer and, in turn, the double layer thickness based on the p H dependence of the SFG intensity [10] and a linear relation between the SFG intensity and (ionic strength) [12]. In the case of the Pt/electrolyte solution interface the drop in the potential profile in the vicinity ofelectrode become precipitous as the electrode becomes more highly charged. Thus, the ordered water layer in the vicinity of the electrode surface becomes thiimer as the electrode is more highly charged. Since the number of ordered water molecules becomes smaller, the SFG intensity should become weaker at potentials away from the pzc. This is contrary to the experimental result. [Pg.81]

This series covers recent advances in electrocatalysis and electrochemistry and depicts prospects for their contribution into the present and future of the industrial world. It illustrates the transition of electrochemical sciences from a solid chapter of physical electrochemistry (covering mainly electron transfer reactions, concepts of electrode potentials and stmcture of the electrical double layer) to the field in which electrochemical reactivity is shown as a unique chapter of heterogeneous catalysis, is supported by high-level theory, connects to other areas of science, and includes focus on electrode surface structure, reaction environment, and interfacial spectroscopy. [Pg.704]

The description of the ion transfer process is closely related to the structure of the electrical double layer at the ITIES [50]. The most widely used approach is the combination of the BV equation and the modified Verwey-Niessen (MVN) model. In the MVN model, the electrical double layer at the ITIES is composed of two diffuse layers and one ion-free or inner layer (Fig. 8). The positions delimiting the inner layer are denoted by X2 and X2, and represent the positions of closest approach of the transferring ion to the ITIES from the organic and aqueous side, respectively. The total Galvani potential drop across the interfacial region, AgCp = cj) — [Pg.545]

Double integration with respect to EA yields the surface excess rB+ however, the calculation requires that the value of this excess be known, along with the value of the first differential 3TB+/3EA for a definite potential. This value can be found, for example, by measuring the interfacial tension, especially at the potential of the electrocapillary maximum. The surface excess is often found for solutions of the alkali metals on the basis of the assumption that, at potentials sufficiently more negative than the zero-charge potential, the electrode double layer has a diffuse character without specific adsorption of any component of the electrolyte. The theory of diffuse electrical double layer is then used to determine TB+ and dTB+/3EA (see Section 4.3.1). [Pg.222]

Of the quantities connected with the electrical double layer, the interfacial tension y, the potential of the electrocapillary maximum Epzc, the differential capacity C of the double layer and the surface charge density q(m) can be measured directly. The latter quantity can be measured only in extremely pure solutions. The great majority of measurements has been carried out at mercury electrodes. [Pg.242]

Besides the glass seal interfaces, interactions have also been reported at the interfaces of the metallic interconnect with electrical contact layers, which are inserted between the cathode and the interconnect to minimize interfacial electrical resistance and facilitate stack assembly. For example, perovskites that are typically used for cathodes and considered as potential contact materials have been reported to react with interconnect alloys. Reaction between manganites- and chromia-forming alloys lead to formation of a manganese-containing spinel interlayer that appears to help minimize the contact ASR [219,220], Sr in the perovskite conductive oxides can react with the chromia scale on alloys to form SrCr04 [219,221],... [Pg.198]

The description of the sorption of charged molecules at a charged interface includes an electrostatic term, which is dependent upon the interfacial potential difference, Ai//(V). This term is in turn related to the surface charge density, electric double layer model. The surface charge density is calculated from the concentrations of charged molecules at the interface under the assumption that the membrane itself has a net zero charge, as is the case, for example, for membranes constructed from the zwitterionic lecithin. Moreover,... [Pg.224]

Fig. 5-18. Parts of interfacial charge carried by excess cations and anions on the solution side of an electric double layer as a function of electrode potential of a mercury electrode in a sodium chloride solution Oh = interfacial charge on the side of metal electrode os = interfacial charge on the solution side o. = excess positive chaige carried by cations o. = excess negative charge carried by anions r. = interfacial cation excess T. = interfacial anion excess. [From ( ahame, 1947.]... Fig. 5-18. Parts of interfacial charge carried by excess cations and anions on the solution side of an electric double layer as a function of electrode potential of a mercury electrode in a sodium chloride solution Oh = interfacial charge on the side of metal electrode os = interfacial charge on the solution side o. = excess positive chaige carried by cations o. = excess negative charge carried by anions r. = interfacial cation excess T. = interfacial anion excess. [From ( ahame, 1947.]...
Hence, two phases in contact can only be at a difference of electric potential V when the electrical distribution in the interfacial layer gives rise to the necessary moment. Thus, although the equilibrium value of V is determined solely by the chemical composition of the two homogeneous phases, a particular molecular and ionic arrangement must be established in the intervening non-homogeneous layer in order that the conditions of chemical and electrical equilibrium may be simultaneously obeyed. [Pg.217]

The current density, will be the sum of the faradaic current density, jF, and the charging current density, c, cf. eqn. (8). The latter is related to the interfacial potential indicated in an implicit way by eqn. (20). The theory of the electrical double layer provides no analytical expression for the relation between E and qM and so, rigorously, this part of the problem would have to be solved numerically using the empirical relationship, which is known for many commonly used indifferent electrolytes. If Cd = dqM/dE is the differential double-layer capacity, we have... [Pg.217]

The characteristics of the diffuse electric double layer at a completely polarized interface, such as at a mercury/aqueous electrolyte solution interface are essentially identical with those found at the reversible interface. With the polarizable interface the potential difference is applied by the experimenter, and, together with the electrolyte, specifically adsorbed as well as located in the diffuse double layer, results in a measurable change in interfacial tension and a measurable capacity. [Pg.154]

The Electrical Double Layer, Interfacial Charge Density, and Zeta Potential... [Pg.622]

We start this chapter with electrocapillarity because it provides detailed information of the electric double layer. In a classical electrocapillary experiment the change of interfacial tension at a metal-electrolyte interface is determined upon variation of an applied potential (Fig. 5.1). It was known for a long time that the shape of a mercury drop which is in contact with an electrolyte depends on the electric potential. Lippmann1 examined this electrocapillary effect in 1875 for the first time [68], He succeeded in calculating the interfacial tension as a function of applied potential and he measured it with mercury. [Pg.58]

The interfacial tension decreases with increasing amount of surface potential. The reason is the increased interfacial excess of counterions in the electric double layer. In accordance with the Gibbs adsorption isotherms, the interfacial tension must decrease with increasing interfacial excess. At charged interfaces ions have an effect similarly to surfactants at liquid surfaces. [Pg.60]

The principle behind this investigation is electrochromism or Stark-effect spectroscopy. The electronic transition energy of the adsorbed chromophore is perturbed by the electric field at the electric double layer. This is due to interactions of the molecular dipole moment, in the ground and excited states, with the interfacial electric field induced by the applied potential. The change in transition frequency Av, is related to the change in the interfacial electric field, AE, according to the following ... [Pg.220]

Electrocapillary is the study of the interfacial tension as a function of the electrode potential. Such a study can shed useful light on the structure and properties of the electrical double layer. The influence of the electrode-solution potential difference on the surface tension (y) is particularly pronounced at nonrigid electrodes (such as the dropping mercury one, discussed in Section 4.5). A plot of the surface tension versus the potential (like the ones shown in Fig. 1.13) is called an electrocapillary curve. [Pg.23]

Simultaneously, with the application of the latest experimental techniques, some new theoretical models of edl were constructed. They describe the electric charge and potential distribution in the interfacial region and fit to the experimental data. The new models replace the old classic ones that could not predict some observed parameters from measured ones. Some models, characteristic for metal oxide-electrolyte solution were constructed a porous layer model, then a site binding model and its successive version. [Pg.137]

The two sides, positive and negative, of the electrical double layer may be situated on different sides of the material phase boundary, or on the same side. There are three different ways in which electrical double layers may arise, when two phases are brought into contact, and therefore three different origins for interfacial potential differences. [Pg.300]

Since these interfaces are usually constructed of charged detergents a diffuse electrical double layer is produced and the interfacial boundary can be characterized by a surface potential. Consequently, electrostatic as well as hydrophilic and hydrophobic interactions of the interfacial system can be designed. In this report we will review our achievements in organizing photosensitized electron transfer reactions in different microenvironments such as bilayer membranes and water-in-oil microemulsions.In addition, a novel solid-liquid interface, provided by colloidal Si02 particles in an aqueous medium will be discussed as a means of controlling photosensitized electron transfer reactions. [Pg.77]


See other pages where Electrical interfacial layer potentials is mentioned: [Pg.875]    [Pg.524]    [Pg.3175]    [Pg.403]    [Pg.1960]    [Pg.396]    [Pg.30]    [Pg.139]    [Pg.309]    [Pg.129]    [Pg.428]    [Pg.708]    [Pg.156]    [Pg.4]    [Pg.90]    [Pg.131]    [Pg.232]    [Pg.196]    [Pg.226]    [Pg.626]    [Pg.122]    [Pg.111]    [Pg.43]    [Pg.138]    [Pg.89]    [Pg.71]   
See also in sourсe #XX -- [ Pg.860 ]




SEARCH



Electrical interfacial layer

Electrical potential

Interfacial layer

Potential interfacial

© 2024 chempedia.info