Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrical double layer results

Two potential improvements compared to the common practice are introduced. Both refer to the description of the diffuse layer. The commonly applied surface complexation models involve the Poisson-Boltzmann approximation for diffuse-layer potential of the electric double layer (resulting in the Gouy-Chapman equation for flat plates in most apphcations). [Pg.691]

The concentration and nature of the electrolyte also has a significant impact on the stability of charged colloid dispersions. This was discussed in Section 3.3.2, where the concept of electric double layers was introduced. The electric double layer results from the atmosphere of counterions around a charged colloid particle. The decay of the potential in an electric double layer is governed by the Debye screening length, which is dependent on electrolyte concentration (Eq. 3.8). In the section that follows, the stability of charged colloids is analysed in terms of the balance between the electrostatic (repulsive) forces between double layers and the (predominantly attractive) van der Waals forces. [Pg.126]

The well-known DLVO theory of coUoid stabiUty (10) attributes the state of flocculation to the balance between the van der Waals attractive forces and the repulsive electric double-layer forces at the Hquid—soHd interface. The potential at the double layer, called the zeta potential, is measured indirectly by electrophoretic mobiUty or streaming potential. The bridging flocculation by which polymer molecules are adsorbed on more than one particle results from charge effects, van der Waals forces, or hydrogen bonding (see Colloids). [Pg.318]

When two conducting phases come into contact with each other, a redistribution of charge occurs as a result of any electron energy level difference between the phases. If the two phases are metals, electrons flow from one metal to the other until the electron levels equiUbrate. When an electrode, ie, electronic conductor, is immersed in an electrolyte, ie, ionic conductor, an electrical double layer forms at the electrode—solution interface resulting from the unequal tendency for distribution of electrical charges in the two phases. Because overall electrical neutrality must be maintained, this separation of charge between the electrode and solution gives rise to a potential difference between the two phases, equal to that needed to ensure equiUbrium. [Pg.510]

As a related matter it is easily understood that addition of salts at a certain concentration destabilizes an emulsion. It may be concluded that if an emulsion remains stable at electrolyte contents higher than those cited in the preceding paragraphs, the stabiUty is not the result of electric double-layer repulsion, which may be useful information to find the optimum manner for destabilization. [Pg.200]

In some cases, e.g., the Hg/NaF q interface, Q is charge dependent but concentration independent. Then it is said that there is no specific ionic adsorption. In order to interpret the charge dependence of Q a standard explanation consists in assuming that Q is related to the existence of a solvent monolayer in contact with the wall [16]. From a theoretical point of view this monolayer is postulated as a subsystem coupled with the metal and the solution via electrostatic and non-electrostatic interactions. The specific shape of Q versus a results from the competition between these interactions and the interactions between solvent molecules in the mono-layer. This description of the electrical double layer has been revisited by... [Pg.804]

First attempts to study the electrical double layer at A1 electrodes in aqueous and nonaqueous solutions were made in 1962-1965,182,747,748 but the results were not successful.190 The electrical double-layer structure at a renewed Al/nonaqueous solution of surface-inactive electrolytes such as (CH3)4NBF4) (CH3)4NC104, (CH3>4NPF6, and (C4H9)4NBF4, has been investigated by impedance.749-751 y-butyrolactone (y-BL), DMSO, and DMF have been used as solvents. In a wide region of E [-2.5 [Pg.128]

The electroviscous effect present with solid particles suspended in ionic liquids, to increase the viscosity over that of the bulk liquid. The primary effect caused by the shear field distorting the electrical double layer surrounding the solid particles in suspension. The secondary effect results from the overlap of the electrical double layers of neighboring particles. The tertiary effect arises from changes in size and shape of the particles caused by the shear field. The primary electroviscous effect has been the subject of much study and has been shown to depend on (a) the size of the Debye length of the electrical double layer compared to the size of the suspended particle (b) the potential at the slipping plane between the particle and the bulk fluid (c) the Peclet number, i.e., diffusive to hydrodynamic forces (d) the Hartmarm number, i.e. electrical to hydrodynamic forces and (e) variations in the Stern layer around the particle (Garcia-Salinas et al. 2000). [Pg.103]

The primary electroviscous effect occurs, for a dilute system, when the complex fluid is sheared and the electrical double layers around the particles are distorted by the shear field. The viscosity increases as a result of an extra dissipation of energy, which is taken into account as a correction factor pi" to the Einstein equation ... [Pg.103]

For solid surfaces interacting in air, the adhesion forces mainly result from van der Waals interaction and capillary force, but the effects of electrostatic forces due to the formation of an electrical double-layer have to be included for analyzing adhesion in solutions. Besides, adhesion has to be studied as a dynamic process in which the approach and separation of two surfaces are always accompanied by unstable motions, jump in and out, attributing to the instability of sliding system. [Pg.184]

Ionic compounds such as halides, carboxylates or polyoxoanions, dissolved in (generally aqueous) solution can generate electrostatic stabilization. The adsorption of these compounds and their related counter ions on the metallic surface will generate an electrical double-layer around the particles (Fig. 1). The result is a coulombic repulsion between the particles. If the electric potential associated with the double layer is high enough, then the electrostatic repulsion will prevent particle aggregation [27,30]. [Pg.264]

The concept of surface concentration Cg j requires closer definition. At the surface itself the ionic concentrations will change not only as a result of the reaction but also because of the electric double layer present at the surface. Surface concentration is understood to be the concentration at a distance from the surface small compared to diffusion-layer thickness, yet so large that the effects of the EDL are no fonger felt. This condition usually is met at points about 1 nm from the surface. [Pg.56]

In 1910, Georges Gouy (1854-1926) and independently, in 1913, David L. Chapman (1869-1958) introduced the notion of a diffuse electrical double layer at the surface of electrodes resulting from a thermal motion of ions and their electrostatic interactions with the surface. [Pg.697]

Previously, we have proposed that SFG intensity due to interfacial water at quartz/ water interfaces reflects the number of oriented water molecules within the electric double layer and, in turn, the double layer thickness based on the p H dependence of the SFG intensity [10] and a linear relation between the SFG intensity and (ionic strength) [12]. In the case of the Pt/electrolyte solution interface the drop in the potential profile in the vicinity ofelectrode become precipitous as the electrode becomes more highly charged. Thus, the ordered water layer in the vicinity of the electrode surface becomes thiimer as the electrode is more highly charged. Since the number of ordered water molecules becomes smaller, the SFG intensity should become weaker at potentials away from the pzc. This is contrary to the experimental result. [Pg.81]

The discussion in Refs. 17 and 18 is illustrative. Torrie [17] presented very important results for grand canonical Monte Carlo simulations of an electrical double layer in 2 1 electrolytes. Those results provide very convincing evidence that C < 0 can occur under cr-control. However, instead of analyzing the consequences of this fact for real systems, the author simply quotes the statement [21] that sign of C is not restricted, even for -control. Reliance on this result (see a critique in Ref. 22) simply ignored the problem and discouraged closer study of this system. [Pg.81]

A theoretical approach based on the electrical double layer correction has been proposed to explain the observed enhancement of the rate of ion transfer across zwitter-ionic phospholipid monolayers at ITIES [17]. If the orientation of the headgroups is such that the phosphonic group remains closer to the ITIES than the ammonium groups, the local concentration of cations is increased at the ITIES and hence the current observed due to cation transfer is larger than in the absence of phospholipids at the interface. This enhancement is evaluated from the solution of the PB equation, and calculations have been carried out for the conditions of the experiments presented in the literature. The theoretical results turn out to be in good agreement with those experimental studies, thus showing the importance of the electrostatic correction on the rate of ion transfer across an ITIES with adsorbed phospholipids. [Pg.551]


See other pages where Electrical double layer results is mentioned: [Pg.774]    [Pg.774]    [Pg.63]    [Pg.101]    [Pg.23]    [Pg.108]    [Pg.19]    [Pg.27]    [Pg.559]    [Pg.368]    [Pg.100]    [Pg.774]    [Pg.774]    [Pg.63]    [Pg.101]    [Pg.23]    [Pg.108]    [Pg.19]    [Pg.27]    [Pg.559]    [Pg.368]    [Pg.100]    [Pg.2753]    [Pg.513]    [Pg.465]    [Pg.199]    [Pg.200]    [Pg.1421]    [Pg.124]    [Pg.800]    [Pg.1249]    [Pg.77]    [Pg.82]    [Pg.191]    [Pg.642]    [Pg.179]    [Pg.392]    [Pg.102]    [Pg.265]    [Pg.140]    [Pg.141]    [Pg.23]    [Pg.262]    [Pg.22]    [Pg.129]    [Pg.69]   
See also in sourсe #XX -- [ Pg.34 , Pg.35 ]




SEARCH



Electric double layer

Electrical double layer

Electrical/electrically double-layer

© 2024 chempedia.info