Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elastomers phase separation

Elastomeric Modified Adhesives. The major characteristic of the resins discussed above is that after cure, or after polymerization, they are extremely brittie. Thus, the utility of unmodified common resins as stmctural adhesives would be very limited. Eor highly cross-linked resin systems to be usehil stmctural adhesives, they have to be modified to ensure fracture resistance. Modification can be effected by the addition of an elastomer which is soluble within the cross-linked resin. Modification of a cross-linked resin in this fashion generally decreases the glass-transition temperature but increases the resin dexibiUty, and thus increases the fracture resistance of the cured adhesive. Recendy, stmctural adhesives have been modified by elastomers which are soluble within the uncured stmctural adhesive, but then phase separate during the cure to form a two-phase system. The matrix properties are mosdy retained the glass-transition temperature is only moderately affected by the presence of the elastomer, yet the fracture resistance is substantially improved. [Pg.233]

Acryhc stmctural adhesives have been modified by elastomers in order to obtain a phase-separated, toughened system. A significant contribution in this technology has been made in which acryhc adhesives were modified by the addition of chlorosulfonated polyethylene to obtain a phase-separated stmctural adhesive (11). Such adhesives also contain methyl methacrylate, glacial methacrylic acid, and cross-linkers such as ethylene glycol dimethacrylate [97-90-5]. The polymerization initiation system, which includes cumene hydroperoxide, N,1S7-dimethyl- -toluidine, and saccharin, can be apphed to the adherend surface as a primer, or it can be formulated as the second part of a two-part adhesive. Modification of cyanoacrylates using elastomers has also been attempted copolymers of acrylonitrile, butadiene, and styrene ethylene copolymers with methylacrylate or copolymers of methacrylates with butadiene and styrene have been used. However, because of the extreme reactivity of the monomer, modification of cyanoacrylate adhesives is very difficult and material purity is essential in order to be able to modify the cyanoacrylate without causing premature reaction. [Pg.233]

Phase separation is usually only important in elastomers, thermoplastics, and fibers with excellent mechanical properties for applications like conveyor belts, tool housings, and spandex textiles. For many other material types, such as foams... [Pg.220]

Since most polymers, including elastomers, are immiscible with each other, their blends undergo phase separation with poor adhesion between the matrix and dispersed phase. The properties of such blends are often poorer than the individual components. At the same time, it is often desired to combine the process and performance characteristics of two or more polymers, to develop industrially useful products. This is accomplished by compatibilizing the blend, either by adding a third component, called compatibilizer, or by chemically or mechanically enhancing the interaction of the two-component polymers. The ultimate objective is to develop a morphology that will allow smooth stress transfer from one phase to the other and allow the product to resist failure under multiple stresses. In case of elastomer blends, compatibilization is especially useful to aid uniform distribution of fillers, curatives, and plasticizers to obtain a morphologically and mechanically sound product. Compatibilization of elastomeric blends is accomplished in two ways, mechanically and chemically. [Pg.299]

Reversible network structure is the single most important characteristic of a thermoplastic elastomer. This novel property generally arises from the presence of a phase-separated morphology in the bulk material which in turn is dictated by the molecular structure, often of a block copolymer nature. A wide variety of synthetic methods can, in principle, produce endless varieties of thermoplastic elastomers this fact coupled with the advantageous processing characteristics of these materials suggest that the use of thermoplastic elastomers will continue to grow in the 1980 s. [Pg.487]

The solution is transformed to an oil-in-oil emulsion in which a polystyrene solution forms the disperse phase and the elastomer polyester component solution the continuous phase. The point of phase separation is observed experimentally by the onset of turbidity, due to the Tyndall effect. The conversion required for phase separation to occur depends basically on the solubility of the polystyrene chains in the elastomer solution, which in turn is governed by the elastomer concentration and compatibility of the two polymers. [Pg.411]


See other pages where Elastomers phase separation is mentioned: [Pg.95]    [Pg.534]    [Pg.404]    [Pg.95]    [Pg.534]    [Pg.404]    [Pg.204]    [Pg.233]    [Pg.11]    [Pg.480]    [Pg.468]    [Pg.479]    [Pg.653]    [Pg.212]    [Pg.215]    [Pg.219]    [Pg.219]    [Pg.220]    [Pg.220]    [Pg.250]    [Pg.49]    [Pg.57]    [Pg.126]    [Pg.147]    [Pg.148]    [Pg.170]    [Pg.178]    [Pg.184]    [Pg.407]    [Pg.153]    [Pg.154]    [Pg.192]    [Pg.355]    [Pg.205]    [Pg.131]    [Pg.375]    [Pg.485]    [Pg.485]    [Pg.486]    [Pg.194]    [Pg.255]    [Pg.419]    [Pg.104]    [Pg.273]    [Pg.22]    [Pg.122]    [Pg.148]    [Pg.53]   
See also in sourсe #XX -- [ Pg.179 ]




SEARCH



Elastomers phase

Thermoplastic elastomers phase separation, thermodynamics

© 2024 chempedia.info