Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization early transition metals

Unlike early transition metal polymerization catalysts which do not tolerate functional groups, cationic palladium complexes are able to copolymerize ethylene with methyl acrylate.128... [Pg.1276]

A hybrid DFT method has been used to calculate the basicities of 1,2-azaborolyl 9 and 1,2-thiaborolyl 22, which were found to be more basic than cyclopentadienyl. The catalytic performance of early transition metal polymerization catalysts with these heterocyclic ligands has been evaluated by this MO approach <2003MI417-02>. [Pg.1193]

Ligand metallation. In early transition metal polymerization catalysis often metalation of the ligand occurs leading to inactive catalysts. In late transition metal chemistry the same reactions occur, but now the complexes formed represent a dormant site and catalyst activity can often be restored. Work-up of rhodium-phosphite catalyst solutions after hydroformylation often shows partial formation of metallated species, especially when bulky phosphites are used [50]. Dihydrogen elimination or alkane elimination may lead to the metallated complex. The reaction is reversible for rhodium and thus the metallated species could function as a stabilized form of rhodium during a catalyst recycle. Many metallated phosphite complexes have been reported, but we mention only two, one for triphenyl phosphite and rhodium [51, 52] (see Figure 19) and one for a bulky phosphite and iridium [53]. [Pg.248]

Mashima K, Nakayama Y and Nakamura A 1997 Recent trends in polymerization of a-olefins catalyzed by organometallic complexes of early transition metals Adv. Polym. Sc/. 133 1-54... [Pg.2538]

In the early 1950s, Ziegler observed that certain heterogeneous catalysts based on transition metals polymerized ethylene to a linear, high density material at modest pressures and temperatures. Natta showed that these catalysts also could produce highly stereospecific poly-a-olefins, notably isotactic polypropylene, and polydienes. They shared the 1963 Nobel Prize in chemistry for their work. [Pg.437]

Bent ansa-metallocenes of early transition metals (especially Ti, Zr, Hf) have attracted considerable interest due to their catalytic activity in the polymerization of a-olefins. Ruthenium-catalyzed olefin metathesis has been used to connect two Cp substituents coordinated to the same metal [120c, 121a] by RCM or to connect two bent metallocenes by cross metathesis [121b]. A remarkable influence of the catalyst on E/Z selectivity was described for the latter case while first-generation catalyst 9 yields a 1 1 mixture of E- and Z-dimer 127, -127 is the only product formed with 56d (Eq. 19). [Pg.259]

Kinetic studies using 1,9-decadiene and 1,5-hexadiene in comparison widi catalyst 14 and catalyst 12 demonstrate an order-of-magnitude difference in their rates of polymerization, widi 14 being the faster of the two.12 Furdier, this study shows diat different products are produced when die two catalysts are reacted widi 1,5-hexadiene. Catalyst 14 generates principally lineal" polymer with the small amount of cyclics normally observed in step condensation chemistry, while 12 produces only small amounts of linear oligomers widi die major product being cyclics such as 1,5-cyclooctadiene.12 Catalyst 12, a late transition metal benzylidene (carbene), has vastly different steric and electronic factors compared to catalyst 14, an early transition metal alkylidene. Since die results were observed after extended reaction time periods and no catalyst quenching or kinetic product isolation was performed, this anomaly is attributed to mechanistic differences between diese two catalysts under identical reaction conditions. [Pg.438]

Bis(cyclopentadienyl) complexes are central to the organometallic chemistry of the early transition metals and feature in applications such as alkene polymerization chemistry. Parallels can be drawn between a porphyrin ligand and two cyclopentadienyl ligands, in that they both contribute a 2— formal charge and exert a considerable steric influence on other ligands in the same molecule. Several of the metalloporphyrin complexes discussed below have bis(cyclopentadienyl) counterparts, and authors in some ca.ses have drawn quite detailed comparisons, although these discussions will not be repeated here. [Pg.232]

Perhaps the most important chemical property of these complexes is their potential as catalysts, particularly of the early transition metal isoleptic compounds for a-olefin polymerization. This arises because unlike the methyls, they are sufficiently stable to be used at temperatures where polymerization rates are adequate. Some data are summarized in Table VIII ( 9) TT-acceptor ligands are clearly disadvantageous. It will be seen that some of the systems are more active than Ziegler types, although stereoselectivity is poorer. [Pg.323]

Mashima, K., Nakayama, Y. and Nakamura. A. Recent Trends in Polymerization of a-Oleftm Catalyzed by Organometallic Complexes of Early Transition Metals. Vol. 133, pp. 1-52. [Pg.212]

The mechanistic similarity between Ziegler-Natta polymerization of olefins and the alkene cyclization reactions described above suggested that early transition metal catalysts would be effective catalysts for the coupling of... [Pg.237]

In this contribution, we review the mechanism of polymerization and oligomerization involving early transition metals, taking as our basis recent results in advanced organometallic chemistry. First of all, some recent examples of the previous reviews concerning the Ziegler-Natta polymerization are cited [1-10]. Then, relevant new reports are surveyed in a systematic fashion. [Pg.3]

Recently, a deeper understanding of the precise nature of metal-carbon bonding was achieved, enabling specific polymerization catalyst systems to be designed on a practical level. The metal-carbon bond of early transition metals is partially ionic, while that of late transition metal is generally covalent. The degree of ionicity is delicately dependent on the identity of metal, formal oxidation states and auxiliary ligands. [Pg.3]

The 7r-back donation stabilizes the alkene-metal 7c-bonding and therefore this is the reason why alkene complexes of the low-valent early transition metals so far isolated did not catalyze any polymerization. Some of them catalyze the oligomerization of olefins via metallocyclic mechanism [25,30,37-39]. For example, a zirconium-alkyl complex, CpZrn(CH2CH3)(7/4-butadiene)(dmpe) (dmpe = l,2-bis(dimethylphosphino)ethane) (24), catalyzed the selective dimerization of ethylene to 1-butene (Scheme I) [37, 38]. [Pg.7]

The molecular design of stereospecific homogeneous catalysts for polymerization and oligomerization has now reached a practical stage, which is the result of the rapid developments in early transition metal organometallic chemistry in this decade. In fact, Exxon and Dow are already producing polyethylene commercially with the help of metallocene catalysts. Compared to the polymerization of a-olefins, the polymerization of polar vinyl, alkynyl and cyclic monomers seems to be less developed. [Pg.45]

In this contribution, we describe the discovery and application of phenoxy-imine ligated early transition metal complexes (FI catalysts) for olefin polymerization, including the concept behind our catalyst design, the discovery and the polymerization behavior of FI catalysts, and their applications to new polyolefinic materials. [Pg.7]

Among the highly active catalysts introduced above, bis(phenoxy-imine) early transition metal complexes (Fig. 9) in particular show strikingly high activities for the polymerization of ethylene [14, 51-54]. [Pg.10]

In order to incorporate polar-functionalized olefins, the catalyst system must exhibit tolerance to the functionality as described above. Therefore, polar monomer incorporation by the Ni(II) catalysts is generally not observed. Traces of methyl acrylate can be incorporated by the Ni(II) catalyst only under low loadings of that monomer [85], Acrylamide has been incorporated after prior treatment with tri-isobutylaluminum to block the amide donor sites, although polymerization activities are still relatively low [86], A similar protection of Lewis-basic functionalities by the coactivator has been cited to explain the copolymerization of certain monomers by early transition metal systems as well [40],... [Pg.197]

Olefin Polymerization by Early Transition Metal Catalysts... [Pg.23]


See other pages where Polymerization early transition metals is mentioned: [Pg.193]    [Pg.289]    [Pg.781]    [Pg.193]    [Pg.289]    [Pg.781]    [Pg.327]    [Pg.433]    [Pg.238]    [Pg.33]    [Pg.3]    [Pg.99]    [Pg.6]    [Pg.9]    [Pg.11]    [Pg.11]    [Pg.43]    [Pg.162]    [Pg.181]    [Pg.182]    [Pg.182]    [Pg.183]    [Pg.184]    [Pg.499]    [Pg.501]    [Pg.113]    [Pg.33]    [Pg.563]    [Pg.20]   
See also in sourсe #XX -- [ Pg.376 , Pg.377 , Pg.378 , Pg.379 , Pg.380 , Pg.381 , Pg.382 , Pg.383 ]




SEARCH



Coordination polymerization early transition metal-based

Metal polymerization

Transition early

Transition metal early

© 2024 chempedia.info