Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dynamic reactivity theories

Double perturbation 198 Double zeta basis set 160 Dummy atom 176 Dynamic reactivity theories 280... [Pg.175]

The basic theories of physics - classical mechanics and electromagnetism, relativity theory, quantum mechanics, statistical mechanics, quantum electrodynamics - support the theoretical apparatus which is used in molecular sciences. Quantum mechanics plays a particular role in theoretical chemistry, providing the basis for the valence theories which allow to interpret the structure of molecules and for the spectroscopic models employed in the determination of structural information from spectral patterns. Indeed, Quantum Chemistry often appears synonymous with Theoretical Chemistry it will, therefore, constitute a major part of this book series. However, the scope of the series will also include other areas of theoretical chemistry, such as mathematical chemistry (which involves the use of algebra and topology in the analysis of molecular structures and reactions) molecular mechanics, molecular dynamics and chemical thermodynamics, which play an important role in rationalizing the geometric and electronic structures of molecular assemblies and polymers, clusters and crystals surface, interface, solvent and solid-state effects excited-state dynamics, reactive collisions, and chemical reactions. [Pg.428]

According to traditional interpretation of chemical reactivity, the reaction rate and hence the product selectivity are governed by the energy of the TS and its variation. However, ab initio direct MD simulation studies described in this chapter revealed that this is not universally true and that the organic reactivity theory must consider the effect of dynamics explicitly. [Pg.218]

The softness kernels are relevant to the remaining cases of two or more interacting systems. However, they do not by themselves provide sufficient information to constitute a basis for a theory of chemical reactivity. Clearly, the chemical stimulus to one molecule in a bimolecular reaction is provided by the other. That being the case, an eighth issue arises. Both the perturbing system and the responding system have internal dynamics, yet the softness kernel is a static response function. Dynamic reactivities need to be defined. [Pg.165]

In this chapter, we have tried to convince the reader of the usefulness of the dynamical system theory for chemical reactivity studies. Indeed, it is possible to predict which changes may be achieved when internal, external, or methodological parameters are varied from the shape of energy surface or from the topologies of local functions. The structural stability of the gradient vector fields of global and local functions describing chemical systems appears to be an important concept which has to be considered to understand the reactivity. Moreover, the application of the catastrophe theory to chemical reactions enables the description of the mechanisms [27-34,49-52],... [Pg.55]

R. D. Levine, "Statistical Dynamics, in Theory of Reactive Collisions (M. Baer, ed.). CRC Press, Florida, 1984. [Pg.94]

Takatsuka K, Yonehara T (2011) Exploring dynamical electron theory beyond the Bom-Oppenheimer framework from chemical reactivity to non-adiabatically coupled electronic and nuclear wavepackets on-the-fly under laser field. Phys Chem Chem Phys 13(11) 4987-5016... [Pg.324]

B.A. Pint, Experimental observations in support of the dynamic segregation theory to explain the reactive element effect. Oxidation of Metals, 45, 1/2, 1-31 (1996). [Pg.128]

Pint B A (1996), Experimental Observations in Support of the Dynamic Segregation Theory to Explain the Reactive Element Effect, Oxid Met, 45, 1-37. [Pg.429]

The Langmuir-Hinshelwood picture is essentially that of Fig. XVIII-14. If the process is unimolecular, the species meanders around on the surface until it receives the activation energy to go over to product(s), which then desorb. If the process is bimolecular, two species diffuse around until a reactive encounter occurs. The reaction will be diffusion controlled if it occurs on every encounter (see Ref. 211) the theory of surface diffusional encounters has been treated (see Ref. 212) the subject may also be approached by means of Monte Carlo/molecular dynamics techniques [213]. In the case of activated bimolecular reactions, however, there will in general be many encounters before the reactive one, and the rate law for the surface reaction is generally written by analogy to the mass action law for solutions. That is, for a bimolecular process, the rate is taken to be proportional to the product of the two surface concentrations. It is interesting, however, that essentially the same rate law is obtained if the adsorption is strictly localized and species react only if they happen to adsorb on adjacent sites (note Ref. 214). (The apparent rate law, that is, the rate law in terms of gas pressures, depends on the form of the adsorption isotherm, as discussed in the next section.)... [Pg.722]

The existence of the polyad number as a bottleneck to energy flow on short time scales is potentially important for efforts to control molecnlar reactivity rising advanced laser techniqnes, discussed below in section Al.2.20. Efforts at control seek to intervene in the molecnlar dynamics to prevent the effects of widespread vibrational energy flow, the presence of which is one of the key assumptions of Rice-Ramsperger-Kassel-Marcns (RRKM) and other theories of reaction dynamics [6]. [Pg.75]

Harris A L, Berg M and Harris C B 1986 Studies of chemical reactivity in the condensed phase. I. The dynamics of iodine photodissociation and recombination on a picosecond time scale and comparison to theories for chemical reactions in solution J. Chem. Phys. 84 788... [Pg.865]

Poliak E 1985 Periodic orbits and the theory of reactive scattering Theory of Chemical Reaction Dynamics vol III, ed M Baer (Boca Raton, FL CRC Press)... [Pg.2327]

Many experimental techniques now provide details of dynamical events on short timescales. Time-dependent theory, such as END, offer the capabilities to obtain information about the details of the transition from initial-to-final states in reactive processes. The assumptions of time-dependent perturbation theory coupled with Fermi s Golden Rule, namely, that there are well-defined (unperturbed) initial and final states and that these are occupied for times, which are long compared to the transition time, no longer necessarily apply. Therefore, truly dynamical methods become very appealing and the results from such theoretical methods can be shown as movies or time lapse photography. [Pg.236]

Figure 3 Dynamic recrossmgs m the low and high friction regimes. Recrossmgs back to the reactive state lead to a lowering of the rate constant below the transition state theory value. Figure 3 Dynamic recrossmgs m the low and high friction regimes. Recrossmgs back to the reactive state lead to a lowering of the rate constant below the transition state theory value.
This result comes from the idea of a variational rate theory for a diffusive dynamics. If the dynamics of the reactive system is overdamped and the effective friction is spatially isotropic, the time required to pass from the reactant to the product state is expected to be proportional to the integral over the path of the inverse Boltzmann probability. [Pg.212]

We can distinguish between static theories, which in essence give a description of the electron density, and dynamic theories, where an attempt is marie to measure the response of a molecule to (e.g.) an approaching N02" " ion. In recent years, the electrostatic potential has been used to give a simple representation of the more important features of molecular reactivity. It can be calculated quite easily at points in space ... [Pg.280]

The time that a molecule spends in a reactive system will affect its probability of reacting and the measurement, interpretation, and modeling of residence time distributions are important aspects of chemical reaction engineering. Part of the inspiration for residence time theory came from the black box analysis techniques used by electrical engineers to study circuits. These are stimulus-response or input-output methods where a system is disturbed and its response to the disturbance is measured. The measured response, when properly interpreted, is used to predict the response of the system to other inputs. For residence time measurements, an inert tracer is injected at the inlet to the reactor, and the tracer concentration is measured at the outlet. The injection is carried out in a standardized way to allow easy interpretation of the results, which can then be used to make predictions. Predictions include the dynamic response of the system to arbitrary tracer inputs. More important, however, are the predictions of the steady-state yield of reactions in continuous-flow systems. All this can be done without opening the black box. [Pg.540]


See other pages where Dynamic reactivity theories is mentioned: [Pg.194]    [Pg.29]    [Pg.144]    [Pg.146]    [Pg.168]    [Pg.169]    [Pg.270]    [Pg.279]    [Pg.6]    [Pg.18]    [Pg.11]    [Pg.195]    [Pg.277]    [Pg.262]    [Pg.869]    [Pg.890]    [Pg.438]    [Pg.29]   
See also in sourсe #XX -- [ Pg.280 ]

See also in sourсe #XX -- [ Pg.280 ]




SEARCH



Dynamical theory

Dynamics, theory

Reactive dynamics

Reactivity dynamic

© 2024 chempedia.info