Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dynamic dissociation model

The tranquilization effect may be also explained in terms of the dynamic dissociation model (Fig. 4), where C, interacts more strongly with A than C does, when the separating motion of C from the reference ion A will be retarded. Thus, Ct plays the role of a tranquilizer ion. [Pg.138]

Figure 15. Isotherms of internal mobilities in alkali-alkaline earth nitrate mixtures. The mobility of the alkali ion is always greater than that of the alkaline earth ion. (Reprinted from T. Koura, H. Matsuura, and I. Okada, "A Dynamic Dissociation Model for Internal Mobilities in Molten Alkali and Alkaline Earth Nitrate Mixtures,"/ Mol. Liq. 73-75 195, Fig. 4, Copyright 1997 with permission from Elsevier Science.)... Figure 15. Isotherms of internal mobilities in alkali-alkaline earth nitrate mixtures. The mobility of the alkali ion is always greater than that of the alkaline earth ion. (Reprinted from T. Koura, H. Matsuura, and I. Okada, "A Dynamic Dissociation Model for Internal Mobilities in Molten Alkali and Alkaline Earth Nitrate Mixtures,"/ Mol. Liq. 73-75 195, Fig. 4, Copyright 1997 with permission from Elsevier Science.)...
Okada et al. have presented a dynamic dissociation model, which is schematically shown in one dimension in Fig. 4. They assumed that the separating motion of a cation (or anion) of interest from the reference anion (cation), which is called the self-exchange velocity,is the electrically conducting process, which will be considered in Section III.7( ) in more detail. The Chemla effect can also be reproduced by the SEV. [Pg.149]

In a possible hypothesis, Smirnov et al. have proposed that a transient process such as [MX4]3- + [MXj] - —> [MX,] 2- + [MXJs- is the electrically conducting process. Their concept may he similar to the dynamic dissociation model. [Pg.149]

The dynamic dissociation model resembles the association (or dissociation) model in that electrically conducting species are assumed to he nonassociated species, and it differs from the association model in that in the dynamic dissociation model the dissociation process itself is the electrically conducting process, while in the association model, the amount of the dissociated species is constant according to the chemical equilibrium. [Pg.149]

For (Li, Cs)Cl, the internal mobilities have been calculated from Eqs. (27) and (28), and are given in Table 8. The SEVs were calculated from the same MD runs and are plotted against the calculated internal mobilities in Fig. 17 with excellent correlation between these calculated quantities. The good correlation of the SEV with the calculated and experimental internal mobilities suggests that relatively short-range cation-anion interaction plays a role in internal mobilities and the separating motion of pairs, that is dissociation, is related to the internal mobilities. In other words, the result of the SEV supports the dynamic dissociation model. [Pg.153]

The 1977 review of Martynov et al. [12] discusses existing mechanisms of ESPT, excited-state intramolecular proton transfer (ESIPT) and excited-state double-proton transfer (ESDPT). Various models that have been proposed to account for the kinetics of proton-transfer reactions in general. They include that of association-proton-transfer-dissociation model of Eigen [13], Marcus adaptation of electron-transfer theory [14], and the intersecting state model by Varandas and Formosinho [15,16], Gutman and Nachliel s [17] review in 1990 offers a framework of general conclusions about the mechanism and dynamics of proton-transfer processes. [Pg.578]

FIGURE 20-11 Dynamic instability model of microtubule growth and shrinkage. GTP-bound a(3-tubulin subunits (red) add preferentially to the (-t) end of a preexisting microtubule. After incorporation of a subunit, the GTP (red dot) bound to the (i-tubulin monomer is hydrolyzed to GDP Only microtubules whose (+) ends are associated with GTP-tubulin (those with a GTP cap) are stable and can serve as primers for the polymerization of additional tubulin. Microtubules with GDP-tubulin (blue) at the (+) end (those with a GDP cap) are rapidly depolymerized and may disappear within 1 minute. At high concentrations of unpolymerized GTP-tubulin, the rate of addition of tubulin is faster than the rate of hydrolysis of the GTP bound in the microtubule or the rate of dissociation of GTP-tubulin from microtubule ends thus the microtubule grows. At low concentrations of unpolymerized GTP-tubulin, the rate of addition of tubulin is decreased consequently, the rate of GTP hydrolysis exceeds the rate of addition of tubulin subunits and a GDP cap forms. Because the GDP cap is unstable, the microtubule end peels apart to release tubulin subunits. [See T Mitchison and M. Kirschner, 1984, Nature 312 237 ... [Pg.823]

The recent extension of these thermodynamic models to include the kinetics and mechanisms of organo-metallic interactions has made it possible (1) to quantify the electrochemical availability of these metal complexes to voltammetric systems (Whitfield and Turner, 1980) (2) to examine diffusion and dissociation models for the tremsport of chelated iron to biological cells (Jackson and Morgan, 1978) and (3) to estimate the significance of adsorptive and convective removal processes on the equilibrium specia-tion of metals in natural waters (Lehrman and Childs, 1973). Thus both equOibrium and dynamic models have become an indispensable tool in the identification of the important chemical forms and critical reaction pathways of interactive elements in aquatic environments. [Pg.212]

Two models for analyte ion formation have been proposed. The older model -which had not had a well-defined name before 2013 and is now proclaimed as Coupled Physical and Chemical Dynamics (CPCD) model - assumes neutral analyte molecules in the expanding plume - regardless of whether the analytes were incorporated in the matrix crystals as neutral species or were quantitatively neutralized by their counterions upon cluster dissociation in the case of precharged incorporated analyte molecules. Subsequent to photoionization of the matrix (Eqs 1.3 and 1.4) and secondary intermolecular matrix reactions leading to the generation of protonated as well as deprotonated matrix ions (Eqs 1.5 and 1.6)... [Pg.14]

Corrales LR (1999) Dissociative model of water clusters. J Chemical Physics 110 9071-9080 Curtiss LA, Halley JW, Hautman J, Rahman A (1987) Nonadditivity of ab-initio pair potentials for molecular dynamics of multivalent transition metal ions in water. J Chem Phys 86 2319-2327 de Leeuw NH, Parker SC, Catlow CRA, Price GD (2000) Proton-containing defects at forsterite (010) tilt grain boundaries and stepped surfaces. Am Min 85 1143-1154 de Leeuw NH, Parker SC (1998) Surface stracture and morphology of calcium carbonate polymorphs calcite, aragonite, andvaterite An atomistic approach. JPhys ChemB 102 2914-2922... [Pg.194]

We now conclude this chapter by a discussirai of what we think are the challenges to be tackled by theoreticians in the years to come in the two domains of gas phase spectroscopy and collision-induced dissociation modeling, but also some challenges that, we theoreticians, would like to suggest to the experimentalists to strengthen our knowledge of structural and dynamical information of gas phase molecular assemblies. [Pg.142]

Probing Proton Transfer Reactions in Molecular Dynamics—A Crucial Prerequisite for QM/MM Simulations Using Dissociative Models... [Pg.115]

It can be seen that the number of registered proton transfer events depends strongly on the chosen value for p and it was of particular interest to investigate, whether a distinct value for this threshold criterion is to be preferred. To achieve this lengthy molecular dynamic simulations of an excess proton (300 ps) and hydroxide (0.5 ns) in aqueous solutions as well as IM HCl (300 ps) and NaOH (0.5 ns) have been performed without monitoring the actual molecular topology. As outlined above this is perfectly possible, since the dissociative model treats intra-and intermolecular interactions with the same functional form [57, 106]. (The respective simulation protocols of this studies are summarised in the appendix). [Pg.121]

Table 4.1 Comparison of the proton hopping rate h in ps and the diffusion coefficient D in A / ps obtained from molecular dynamics simulations using the dissociative model... Table 4.1 Comparison of the proton hopping rate h in ps and the diffusion coefficient D in A / ps obtained from molecular dynamics simulations using the dissociative model...
The thennalization stage of this dissociation reaction is not amenable to modelling at the molecular dynamics level becanse of the long timescales required. For some systems, snch as O2 /Pt(l 11), a kinetic treatment is very snccessfiil [77]. However, in others, thennalization is not complete, and the internal energy of the molecnle can still enliance reaction, as observed for N2 /Fe(l 11) [78, 79] and in tlie dissociation of some small hydrocarbons on metal snrfaces [M]- A detailed explanation of these systems is presently not available. [Pg.913]

Luntz A C and Harris J 1991 CH dissociation on metals—a quantum dynamics model Surf. Sc/. 258 397... [Pg.919]

The first classical trajectory study of iinimoleciilar decomposition and intramolecular motion for realistic anhannonic molecular Hamiltonians was perfonned by Bunker [12,13], Both intrinsic RRKM and non-RRKM dynamics was observed in these studies. Since this pioneering work, there have been numerous additional studies [9,k7,30,M,M, ai d from which two distinct types of intramolecular motion, chaotic and quasiperiodic [14], have been identified. Both are depicted in figure A3,12,7. Chaotic vibrational motion is not regular as predicted by tire nonnal-mode model and, instead, there is energy transfer between the modes. If all the modes of the molecule participate in the chaotic motion and energy flow is sufficiently rapid, an initial microcanonical ensemble is maintained as the molecule dissociates and RRKM behaviour is observed [9], For non-random excitation initial apparent non-RRKM behaviour is observed, but at longer times a microcanonical ensemble of states is fonned and the probability of decomposition becomes that of RRKM theory. [Pg.1026]

Detailed analyses of the above experiments suggest that the apparent steps in k E) may not arise from quantized transition state energy levels [110.111]. Transition state models used to interpret the ketene and acetaldehyde dissociation experiments are not consistent with the results of high-level ab initio calculations [110.111]. The steps observed for NO2 dissociation may originate from the opening of electronically excited dissociation chaimels [107.108]. It is also of interest that RRKM-like steps in k E) are not found from detailed quantum dynamical calculations of unimolecular dissociation [91.101.102.112]. More studies are needed of unimolecular reactions near tln-eshold to detennine whether tiiere are actual quantized transition states and steps in k E) and, if not, what is the origin of the apparent steps in the above measurements of k E). [Pg.1035]

Recently, we [61] applied this method to model the (HOCO) photodetachment experiments of Continetti and co-workers [62]. We are currently using the method to study the dissociation dynamics other four-atom systems, including hydrogen peroxide and formaldehyde. [Pg.34]

Several theoretical models, such as the ion-pair model [342,360,361,363,380], the dyneuaic ion-exchange model [342,362,363,375] and the electrostatic model [342,369,381-386] have been proposed to describe retention in reversed-phase IPC. The electrostatic model is the most versatile and enjoys the most support but is mathematically complex euid not very intuitive. The ion-pair model emd dynamic ion-exchange model are easier to manipulate and more instructive but are restricted to a narrow range of experimental conditions for trtilch they might reasonably be applied. The ion-pair model assumes that an ion pair is formed in the mobile phase prior to the sorption of the ion-pair complex into the stationary phase. The solute capacity factor is governed by the equilibrium constants for ion-pair formation in the mobile phase, extraction of the ion-pair complex into the stationary phase, and the dissociation of th p ion-pair complex in the... [Pg.726]

Monte Carlo simulations have been also used to reproduce the dynamics of adsorbates associated with NO reduction reactions. As mentioned above, complex desorption dynamics have been observed experimentally in some instances. For example, the N2 produced from decomposition of N20 on Rh(110) leaves the surface in five peaks associated with both the N20 dissociation events and the desorption of the adsorbed products. Monte Carlo simulations of those spectra was possible by using a model that takes into account both channels of N2 desorption and also N20 O lateral interactions to stabilize N20 adsorption [18],... [Pg.87]

Halley JW, Rustad JR, Rahman A (1993) A polarizable, dissociating molecular-dynamics model for liquid water. J Chem Phys 98(5) 4110-4119... [Pg.255]


See other pages where Dynamic dissociation model is mentioned: [Pg.149]    [Pg.149]    [Pg.141]    [Pg.256]    [Pg.519]    [Pg.907]    [Pg.908]    [Pg.1255]    [Pg.412]    [Pg.102]    [Pg.465]    [Pg.238]    [Pg.402]    [Pg.421]    [Pg.14]    [Pg.24]    [Pg.50]    [Pg.73]    [Pg.113]    [Pg.126]    [Pg.127]    [Pg.717]    [Pg.54]   
See also in sourсe #XX -- [ Pg.149 ]




SEARCH



Dissociation dynamics

© 2024 chempedia.info