Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Drop pressure relaxation method

The adsorption and desorption kinetics of surfactants, such as food emulsifiers, can be measured by the stress relaxation method [4]. In this, a "clean" interface, devoid of surfactants, is first formed by rapidly expanding a new drop to the desired size and, then, this size is maintained and the capillary pressure is monitored. Figure 2 shows experimental relaxation data for a dodecane/ aq. Brij 58 surfactant solution interface, at a concentration below the CMC. An initial rapid relaxation process is followed by a slower relaxation prior to achieving the equilibrium IFT. Initially, the IFT is high, - close to the IFT between the pure solvents. Then, the tension decreases because surfactants diffuse to the interface and adsorb, eventually reaching the equilibrium value. The data provide key information about the diffusion and adsorption kinetics of the surfactants, such as emulsifiers or proteins. [Pg.2]

The aim of this chapter is to present the fundamentals of adsorption at liquid interfaces and a selection of techniques, for their experimental investigation. The chapter will summarise the theoretical models that describe the dynamics of adsorption of surfactants, surfactant mixtures, polymers and polymer/surfactant mixtures. Besides analytical solutions, which are in part very complex and difficult to apply, approximate and asymptotic solutions are given and their range of application is demonstrated. For methods like the dynamic drop volume method, the maximum bubble pressure method, and harmonic or transient relaxation methods, specific initial and boundary conditions have to be considered in the theories. The chapter will end with the description of the background of several experimental technique and the discussion of data obtained with different methods. [Pg.100]

The surface area expansion process in Figure 3.5 must obey the basic thermodynamic reversibility rules so that the movement from equilibrium to both directions should be so slow that the system can be continually relaxed. For most low-viscosity liquids, their surfaces relax very rapidly, and this reversibility criterion is usually met. However, if the viscosity of the liquid is too high, the equilibrium cannot take place and the thermodynamical equilibrium equations cannot be used in these conditions. For solids, it is impossible to expand a solid surface reversibly under normal experimental conditions because it will break or crack rather than flow under pressure. However, this fact should not confuse us surface tension of solids exists but we cannot apply a reversible area expansion method to solids because it cannot happen. Thus, solid surface tension determination can only be made by indirect methods such as liquid drop contact angle determination, or by applying various assumptions to some mechanical tests (see Chapters 8 and 9). [Pg.90]

The most recently developed methods to investigate the surface relaxation of soluble adsorption layers due to harmonic disturbances is the oscillating bubble or drop method. The technique involves the generation of radial oscillations of a gas bubble or a liquid drop at the top of a capillary immersed into the solution under study. The first set-up was described by Lunkenheimer Kretzschmar [150] and Wantke et al. [151] followed by a number of new designs of apparatus using novel pressure transducers to monitor the pressure changes inside a bubble or a drop [67, 152, 153, 154]. [Pg.329]

In recent years, several theoretical and experimental attempts have been performed to develop methods based on oscillations of supported drops or bubbles. For example, Tian et al. used quadrupole shape oscillations in order to estimate the equilibrium surface tension, Gibbs elasticity, and surface dilational viscosity [203]. Pratt and Thoraval [204] used a pulsed drop rheometer for measurements of the interfacial tension relaxation process of some oil soluble surfactants. The pulsed drop rheometer is based on an instantaneous expansion of a pendant water drop formed at the tip of a capillary in oil. After perturbation an interfacial relaxation sets in. The interfacial pressure decay is followed as a function of time. The oscillating bubble system uses oscillations of a bubble formed at the tip of a capillary. The amplitudes of the bubble area and pressure oscillations are measured to determine the dilational elasticity while the frequency dependence of the phase shift yields the exchange of matter mechanism at the bubble surface [205,206]. [Pg.345]


See other pages where Drop pressure relaxation method is mentioned: [Pg.686]    [Pg.432]    [Pg.142]    [Pg.411]    [Pg.174]    [Pg.223]    [Pg.174]    [Pg.54]    [Pg.415]    [Pg.86]    [Pg.178]    [Pg.88]    [Pg.486]    [Pg.73]    [Pg.239]    [Pg.340]    [Pg.408]    [Pg.1563]   
See also in sourсe #XX -- [ Pg.221 ]




SEARCH



Drop Method

Pressure method

© 2024 chempedia.info