Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Distributions, physical cluster

It is important to note that we assume the random fracture approximation (RPA) is applicable. This assumption has certain implications, the most important of which is that it bypasses the real evolutionary details of the highly complex process of the lattice bond stress distribution a) creating bond rupture events, which influence other bond rupture events, redistribution of 0(microvoid formation, propagation, coalescence, etc., and finally, macroscopic failure. We have made real lattice fracture calculations by computer simulations but typically, the lattice size is not large enough to be within percolation criteria before the calculations become excessive. However, the fractal nature of the distributed damage clusters is always evident and the RPA, while providing an easy solution to an extremely complex process, remains physically realistic. [Pg.380]

In physics, the late Danish physicist. Per Bak, and his colleagues Tang and Wiesenfeld startled the field in the late 1980s by producing a widely quoted paper on self-organized criticality. Bak and others applied this model widely - to the size distribution of earthquakes and the distribution of clusters of matter in the universe, to the size distribution of extinction events in the biological record. Self-organized... [Pg.121]

Kusaka I, Wang ZG, Seirrfeld JH (1998a) Direct evalrration of the equilibrium distribution of physical clusters by a grand canonical Monte Carlo simrrlation. J Chem Phys 108 3416-3423 Kusaka I, Wang ZG, Seinfeld JH (1998b) Binary nucleation of sulfuric acid-water Monte Carlo simulation. J Chem Phys 108 6829-6848... [Pg.343]

Equation (11.2) provides the basis for studying transient nucleation. For example, if the monomer concentration is abruptly increased at t = 0, what is the time-dependent development of the cluster distribution Physically, in such a case there is a transient period over which the cluster concentrations adjust to the perturbation in monomer concentration, followed eventually by the establishment of a pseudo-steady-state cluster distribution. Since the characteristic time needed to establish the steady-state cluster distribution is generally short compared to the timescale over which typical monomer concentrations might be changing in the atmosphere, we can assume that the distribution of clusters is always at a steady state corresponding to the instantaneous monomer concentration. There are instances, generally in liquid-to-solid phase transitions, where transient nucleation can be quite important (Shi et al. 1990), although we do not pursue this aspect here. [Pg.492]

To assess homogeneity, the distribution of chemical constituents in a matrix is at the core of the investigation. This distribution can range from a random temporal and spatial occurrence at atomic or molecular levels over well defined patterns in crystalline structures to clusters of a chemical of microscopic to macroscopic scale. Although many physical and optical methods as well as analytical chemistry methods are used to visualize and quantify such spatial distributions, the determination of chemical homogeneity in a CRM must be treated as part of the uncertainty budget affecting analytical chemistry measurements. [Pg.129]

The flow cytometer, fitted with both forward and side scatter detectors, generates a 2D plot indicating the distribution of light intensity, forward scatter (FS) versus side scatter (SS), and showing the physical profile of the particle responsible for the scatter. Figure 5.3 is such a plot for a mixture of five rod-shaped bacteria from our laboratory. The different strains appear in partly separated clusters (indicated by square boxes and dot color) along the side-scatter axis in the lower part of the plot. [Pg.99]

It is clear from figure 6 that the terrestrial data do not cluster about a single point but instead lie along a line of slope 0.5 on the three-isotope diagram, indicating isotopic variation due to mass-dependent fractionation. Since mass fractionation effects in Mg have not been observed in terrestrial materials [30,31], this distribution of observed isotope ratios must be due to fractionation in the ion probe. The physical process which produces the... [Pg.109]

Site-site radial distribution functions for the CNWS system (C carbon P polymer backbones W water H cluster containing hydronium). (Reprinted from K. Malek et al. Journal of Physical Chemistry C 111 (2007) 13627. Copyright 2007, with permission from ACS.)... [Pg.410]


See other pages where Distributions, physical cluster is mentioned: [Pg.2390]    [Pg.203]    [Pg.540]    [Pg.185]    [Pg.541]    [Pg.2390]    [Pg.561]    [Pg.47]    [Pg.277]    [Pg.192]    [Pg.122]    [Pg.236]    [Pg.2389]    [Pg.2765]    [Pg.450]    [Pg.311]    [Pg.133]    [Pg.287]    [Pg.82]    [Pg.160]    [Pg.175]    [Pg.251]    [Pg.526]    [Pg.327]    [Pg.25]    [Pg.440]    [Pg.117]    [Pg.75]    [Pg.339]    [Pg.163]    [Pg.341]    [Pg.26]    [Pg.357]    [Pg.363]    [Pg.191]    [Pg.516]    [Pg.264]    [Pg.511]    [Pg.375]    [Pg.155]   
See also in sourсe #XX -- [ Pg.236 ]




SEARCH



Physical distribution

© 2024 chempedia.info