Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Distribution factor, immobilized catalysts

The equations and plots presented in the foregoing sections largely pertain to the diffusion of a single component followed by reaction. There are several other situations of industrial importance on which considerable information is available. They include biomolecular reactions in which the diffusion-reaction problem must be extended to two molecular species, reactions in the liquid phase, reactions in zeolites, reactions in immobilized catalysts, and extension to complex reactions (see Aris, 1975 Doraiswamy, 2001). Several factors influence the effectiveness factor, such as pore shape and constriction, particle size distribution, micro-macro pore structure, flow regime (bulk or Knudsen), transverse diffusion, gross external surface area of catalyst (as distinct from the total pore area), and volume change upon reaction. Table 11.8 lists the major effects of all these situations and factors. [Pg.764]

The advantages of microreactors, for example, well-defined control of the gas-liquid distributions, also hold for photocatalytic conversions. Furthermore, the distance between the light source and the catalyst is small, with the catalyst immobilized on the walls of the microchannels. It was demonstrated for the photodegradation of 4-chlorophenol in a microreactor that the reaction was truly kinetically controlled, and performed with high efficiency [32]. The latter was explained by the illuminated area, which exceeds conventional reactor types by a factor of 4-400, depending on the reactor type. Even further reduction of the distance between the light source and the catalytically active site might be possible by the use of electroluminescent materials [19]. The benefits of this concept have still to be proven. [Pg.294]

In developing a reactor such as the one just described, it is important to understand important design parameters, such as the radial distribution of the enzyme within the catalyst particles, the kinetics of heparin degradation catalyzed by immobilized heparinase, the flow properties in the reactor, and the effect of in vivo factors such as blood proteins which bind to the substrate. These parameters and how they can be evaluated are now discussed. [Pg.24]

The right choice of supporting material as well as the choice of suitable properties (pore size, specific surface, chemical surface composition) are important factors influencing the immobilization of the metallocene catalyst and the fragmentation of the support during polymerization. Commercially applied porous silica gels are prepared by neutralization of aqueous alkali metal silicate with acid. The pore structure and pore size distribution can be controlled by the type of chemical reaction and experimental conditions. ... [Pg.341]


See other pages where Distribution factor, immobilized catalysts is mentioned: [Pg.241]    [Pg.489]    [Pg.182]    [Pg.318]    [Pg.175]    [Pg.537]    [Pg.224]    [Pg.199]    [Pg.72]   
See also in sourсe #XX -- [ Pg.71 ]




SEARCH



Catalyst factor)

Catalyst immobilization

Distribution factor, immobilized

Distribution factors

Immobilized catalysts

© 2024 chempedia.info