Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Distribution evolution patterns

The interaction of forced and natural convective flow between cathodes and anodes may produce unusual circulation patterns whose description via deterministic flow equations may prove to be rather unwieldy, if possible at all. The Markovian approach would approximate the true flow pattern by subdividing the flow volume into several zones, and characterize flow in terms of transition probabilities from one zone to others. Under steady operating conditions, they are independent of stage n, and the evolution pattern is determined by the initial probability distribution. In a similar fashion, the travel of solid pieces of impurity in the cell can be monitored, provided that the size, shape and density of the solids allow the pieces to be swept freely by electrolyte flow. [Pg.308]

Research on distribution and evolution patterns of abutment pressure in front of the fully-mechanized working face of three-soft coal seam isolated island... [Pg.949]

Fig. 13. Simulated diffraction space of a 10-layer monochiral MWCNT with Hamada indices (40+8/ , 5+k) with / =0,...,9. In (a), (a ) and (02) the initial stacking at ( q was ABAB. whereas in (b), (b[) and (b2) the initial stacking was random, (a) The normal incidence pattern has a centre of symmetry only. (3 )(a2) The cusps are of two different types. The arc length separating the cusps is c (b) The normal incidence pattern now exhibits 2mm symmetry. (b )(b2) The cusps are distributed at random along the generating circles of the evolutes. These sections represent the diffuse coronae referred to in the "disordered stacking model" [17]. Fig. 13. Simulated diffraction space of a 10-layer monochiral MWCNT with Hamada indices (40+8/ , 5+k) with / =0,...,9. In (a), (a ) and (02) the initial stacking at ( q was ABAB. whereas in (b), (b[) and (b2) the initial stacking was random, (a) The normal incidence pattern has a centre of symmetry only. (3 )(a2) The cusps are of two different types. The arc length separating the cusps is c (b) The normal incidence pattern now exhibits 2mm symmetry. (b )(b2) The cusps are distributed at random along the generating circles of the evolutes. These sections represent the diffuse coronae referred to in the "disordered stacking model" [17].
Small subunit rRNA gene sequences have been determined for a large number of nematode taxa distributed across the phylum (Ellis et al., 1986 Zarlenga et al, 1994a,b Fitch et al., 1995 Fitch and Thomas, 1997 Aleshin et al, 1998 Blaxter et al., 1998 Kampfer et al, 1998 Dorris et al., 1999). These can thus be used to examine the relationships of the different nematode orders. The pattern of nematode evolution that emerges is... [Pg.12]

Wink, M. and Mohamed, G. 1. A. 2003. Evolution of chemical defense traits in the Leguminosae Mapping of distribution patterns of secondary metabolities on a molecular phylogeny inferred from nucleotide sequences of the rbcL gene. Biochemical Systematics and Ecology, 31 8 897-917. [Pg.257]

In order to trace the migration of basalt-derived REE in the salt, REE distribution patterns (Fig. 7) and Nd isotopic compositions (Fig. 8) have been determined in a salt horizon adjacent to a basalt dyke (Fig. 2). The flat REE distribution patterns and the almost basaltic Nd isotopic composition of the salt samples collected at the basalt-salt contact point to a basaltic origin of the REE for this sample. With increasing distance from the contact, the patterns are more and more depleted in Ce, Pr, Nd, Sm, and Eu and the Nd isotopic compositions are slightly shifted towards lower eNd values, which, however, still remain above values typical for continental crust or Permian seawater (Stille et al. 1996, and citations therein). This evolution of the REE distribution patterns and the Nd isotopic compositions could basically be due to mixing between a basalt and a salt end member or, alternatively, it could have been fractionation of the REE during migration in the salt that modified the REE patterns. [Pg.137]

The hypothetical REE mixing patterns calculated for the three intermediate samples are shown as dashed lines in Fig. 7. They are almost flat and show no similarities with the observed patterns. We therefore conclude that the observed evolution of the REE distributions cannot be attributed to mixing, but must be due to a fractionation process. [Pg.139]

The characteristic changes brought about by fractional dynamics in comparison to the Brownian case include the temporal nonlocality of the approach manifest in the convolution character of the fractional Riemann-Liouville operator. Initial conditions relax slowly, and thus they influence the evolution of the system even for long times [62, 116] furthermore, the Mittag-Leffler behavior replaces the exponential relaxation patterns of Brownian systems. Still, the associated fractional equations are linear and thus extensive, and the limit solution equilibrates toward the classical Gibbs-B oltzmann and Maxwell distributions, and thus the processes are close to equilibrium, in contrast to the Levy flight or generalised thermostatistics models under discussion. [Pg.255]

M 31] [P 28] The time evolution of the flow patterns in the cross-shaped micro mixer with two static mixing elements was monitored by simulation at time intervals of 50,150, 500 ps and 1 ms after application of pressure [71]. In addition to seeing the evolution of the swirling patterns, it was concluded from this analysis that at 500 ps a nearly homogeneous distribution of the mass fractions is given and at 1 ms this is indeed completed. Hence the theoretical mixing time of the mixer may be below 1 ms. [Pg.87]


See other pages where Distribution evolution patterns is mentioned: [Pg.2937]    [Pg.2937]    [Pg.950]    [Pg.951]    [Pg.954]    [Pg.867]    [Pg.20]    [Pg.330]    [Pg.83]    [Pg.581]    [Pg.110]    [Pg.106]    [Pg.2]    [Pg.340]    [Pg.310]    [Pg.399]    [Pg.367]    [Pg.231]    [Pg.191]    [Pg.130]    [Pg.313]    [Pg.176]    [Pg.106]    [Pg.484]    [Pg.266]    [Pg.11]    [Pg.291]    [Pg.419]    [Pg.127]    [Pg.177]    [Pg.5]    [Pg.303]    [Pg.318]    [Pg.411]    [Pg.632]    [Pg.70]    [Pg.212]   
See also in sourсe #XX -- [ Pg.197 ]




SEARCH



Distribution pattern

© 2024 chempedia.info