Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dissolution contrast

Ionic conductors arise whenever there are mobile ions present. In electrolyte solutions, such ions are nonually fonued by the dissolution of an ionic solid. Provided the dissolution leads to the complete separation of the ionic components to fonu essentially independent anions and cations, the electrolyte is tenued strong. By contrast, weak electrolytes, such as organic carboxylic acids, are present mainly in the undissociated fonu in solution, with the total ionic concentration orders of magnitude lower than the fonual concentration of the solute. Ionic conductivity will be treated in some detail below, but we initially concentrate on the equilibrium stmcture of liquids and ionic solutions. [Pg.559]

Positive-Tone Photoresists based on Dissolution Inhibition by Diazonaphthoquinones. The intrinsic limitations of bis-azide—cycHzed mbber resist systems led the semiconductor industry to shift to a class of imaging materials based on diazonaphthoquinone (DNQ) photosensitizers. Both the chemistry and the imaging mechanism of these resists (Fig. 10) differ in fundamental ways from those described thus far (23). The DNQ acts as a dissolution inhibitor for the matrix resin, a low molecular weight condensation product of formaldehyde and cresol isomers known as novolac (24). The phenoHc stmcture renders the novolac polymer weakly acidic, and readily soluble in aqueous alkaline solutions. In admixture with an appropriate DNQ the polymer s dissolution rate is sharply decreased. Photolysis causes the DNQ to undergo a multistep reaction sequence, ultimately forming a base-soluble carboxyHc acid which does not inhibit film dissolution. Immersion of a pattemwise-exposed film of the resist in an aqueous solution of hydroxide ion leads to rapid dissolution of the exposed areas and only very slow dissolution of unexposed regions. In contrast with crosslinking resists, the film solubiHty is controUed by chemical and polarity differences rather than molecular size. [Pg.118]

Numerous studies have probed how novolac microstmcture influences resist hthographic properties. In one example, a series of resists were formulated from novolacs prepared with varying feed ratios ofpara-jmeta-cmso. These researchers found that the dissolution rate decreased, and the resist contrast increased, as thepara-jmeta-cmso feed ratio increased (33). Condensation can only occur at the ortho position ofpara-cmso but can occur at both the ortho- and i ra-positions of meta-cmso. It is beheved that increased steric factors and chain rigidity that accompany increasedpara-cmso content modify the polymer solubihty. [Pg.122]

The solubHity properties of the PAG itself can play an important role in the overaH resist performance as weU (50). SolubHity differences between the neutral onium salt and the acidic photoproducts can be quite high and wHl affect the resist contrast. In fact onium salts can serve as dissolution inhibitors in novolac polymers, analogous to diazonaphthoquinones, even in the absence of any acid-sensitive chemical function (51). [Pg.124]

The ultraphosphates are situated between P O q and the metaphosphates. These comparatively Htde-known, highly cross-linked polymers contain at least some of the phosphoms atoms as triply coimected branching points. This stmctural feature is quite unstable toward hydrolysis. Ultraphosphates undergo rapid decomposition upon dissolution. In amorphous ultraphosphates, the cross-linking is presumably scattered randomly throughout the stmctural matrix in contrast, crystalline ultraphosphates have a regular pattern. [Pg.324]

MF < MC1 < MBr < MI . By contrast for less-ionic halides with significant non-coulombic lattice forces (e.g. Ag) solubility in water follows the reverse sequence MI < MBr < MC1 < MF . For molecular halides solubility is determined principally by weak intermolecular van der Waals and dipolar forces, and dissolution is commonly favoured by less-polar solvents such as benzene, CCI4 or CS2. [Pg.824]

By contrast, dissolution of OSO4 in cold aqueous KOH produces deep-red crystals of K2[0s 04(0H)2] ( perosmate ), which is easily reduced to the purple osmate , K2[0s 02-(0H)4]. The anions in both cases are octahedral with, respectively, trans OH and trans O groups. [Pg.1082]

In contrast, the selective dissolution or leaching-out by corrosion of one component of a single-phase alloy is of considerable practical importance. The most common example of this phenomenon, which is also referred to as parting , is dezincification, i.e. the selective removal of zinc from brass (see Section 1.6). Similar phenomena are observed in other binary copper-base alloys, notably Cu-Al, as well as in other alloy systems. [Pg.48]

In principle the selective dissolution of the less noble component of a singlephase alloy would perhaps be expected and is in fact observed (dezincification of an a-brass, etc.) even though the details of the mechanism by which it occurs is not yet fully understood. In contrast, the preferential attack of the less noble phase of a two-phase alloy is not only expected and observed —the mechanism by which it occurs in practice is also quite clear. Selective dissolution of the more active phase of a two-phase alloy is best exemplified by the graphitic corrosion (or graphitisation) of grey cast iron. [Pg.48]

The dissolution of passive films, and hence the corrosion rate, is controlled by a chemical activation step. In contrast to the enhancement of the rate of dissolution by OH ions under film-free conditions, the rate of dissolution of the passive film is increased by increasing the ion concentration, and the rate of corrosion in film-forming conditions such as near-neutral solutions follows the empirical Freundlich adsorption isotherm ... [Pg.310]

The dissolution of passive films is, in the main, controlled by a chemical activation step in contrast to film-free conditions at. Many protective anodic films are oxides and hydroxides whose dissolution depends upon the hydrogen ion concentration, and the rate follows a Freundlich adsorption equation ... [Pg.324]

By contrast, if additional electrons were introduced at the metal surface, the cathodic reaction would speed up (to consume the electrons) and the anodic reaction would be inhibited metal dissolution would be slowed down. This is the basis of cathodic protection. [Pg.111]

In contrast chemical and electrolytic polishing enables a smooth level surface to be produced without any residual stress being developed in the surface because the surface is removed by dissolution at relatively low chemical potential and at relatively low rates is such a way that metallic surface asperities are preferentially removed. For this to be most effective the solution properties must be optimised and the pretreatment must leave an essentially bare metal surface for attack by the electrolyte. [Pg.300]

CV of solutions of lithium bis[ salicy-lato(2-)]borate in PC shows mainly the same oxidation behavior as with lithium bis[2,2 biphenyldiolato(2-)-0,0 ] borate, i.e., electrode (stainless steel or Au) passivation. The anodic oxidation limit is the highest of all borates investigated by us so far, namely 4.5 V versus Li. However, in contrast to lithium bis[2,2 -biphenyl-diolato(2-)-0,0 Jborate based solutions, lithium deposition and dissolution without previous protective film formation by oxidation of the anion is not possible, as the anion itself is probably reduced at potentials of 620-670 mV versus Li, where a... [Pg.478]

Dibenzenechromium was studied by Baumgartner et al. 15). They found that the yield of Cr(Ph)2 was 11.8%. [One cannot fail to be struck by the similarity in yields of FeCp2, RuCp2, and Cr(PhH)2, although it may well be merely coincidence.] On heating the irradiated samples to 110°C, they found the yield to increase to 19.4%. It was found that dissolution of the radioactive crystals in benzene yielded no further Cr(PhH)2. This stands in contrast to the above-mentioned results of Zahn and Harbottle which, though not strictly comparable, show Cp to be quite reactive toward ruthenium atoms. Dibenzenechromium was also formed in low yield 14) from neutron irradiation of PhHCr(CO)3, as will be discussed in more detail later. [Pg.225]

In this study, complexation of A9-THC and cannabidiol (prepared by freeze drying) with randomly methylated b-cyclodextrin and hydroxypropyl-b-cyclodextrin (HP-fi-CD) was studied by the phase-solubiHty method. The aqueous solubility of CBD and THC increased as a function of CD concentration, and the dissolution increased for THC and CBD cyclodextrin complexes significantly in contrast to plain THC and CBD. These results demonstrate that cyclodextrins increased both the aqueous solubility and dissolution rate... [Pg.37]

For good manufacturing practice, some aspects have to be considered before application that involve the constituents of the sample solntion the property of the solvent used for dissolution, and the concentration of the solntion applied onto the layer. It must be clear that the application pattern is completely different for preparative purposes in contrast to analytical separations. Mannal application by well-trained analysts is especially helpful for highly concentrated solntions. Benefits of proper instrumentation are shown, and guidance is provided for choosing the proper instrument and crucial parameters that are involved. [Pg.101]


See other pages where Dissolution contrast is mentioned: [Pg.241]    [Pg.96]    [Pg.132]    [Pg.46]    [Pg.241]    [Pg.96]    [Pg.132]    [Pg.46]    [Pg.926]    [Pg.122]    [Pg.126]    [Pg.468]    [Pg.563]    [Pg.340]    [Pg.296]    [Pg.1196]    [Pg.432]    [Pg.408]    [Pg.139]    [Pg.638]    [Pg.1197]    [Pg.1307]    [Pg.121]    [Pg.312]    [Pg.821]    [Pg.384]    [Pg.149]    [Pg.142]    [Pg.401]    [Pg.54]    [Pg.137]    [Pg.110]    [Pg.85]    [Pg.116]    [Pg.240]    [Pg.335]    [Pg.329]   
See also in sourсe #XX -- [ Pg.96 , Pg.132 ]




SEARCH



© 2024 chempedia.info