Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dispersion porosity

The role of the different finely dispersed porosity, gaps produced by graphitization, or pyrolysis steps needs to be further evaluated ... [Pg.396]

Suspension polymerization of VDE in water are batch processes in autoclaves designed to limit scale formation (91). Most systems operate from 30 to 100°C and are initiated with monomer-soluble organic free-radical initiators such as diisopropyl peroxydicarbonate (92—96), tert-huty peroxypivalate (97), or / fZ-amyl peroxypivalate (98). Usually water-soluble polymers, eg, cellulose derivatives or poly(vinyl alcohol), are used as suspending agents to reduce coalescence of polymer particles. Organic solvents that may act as a reaction accelerator or chain-transfer agent are often employed. The reactor product is a slurry of suspended polymer particles, usually spheres of 30—100 pm in diameter they are separated from the water phase thoroughly washed and dried. Size and internal stmcture of beads, ie, porosity, and dispersant residues affect how the resin performs in appHcations. [Pg.386]

The open ceU stmcture of carbon foam with its greater than 90% porosity and chemical inertness at temperatures below 500°C suggests its use as a filtration media for corrosive Hquids and a dispersant for gases. [Pg.527]

Over the past years considerable attention has been paid to the dispersing system since this controls the porosity of the particle. This is important both to ensure quick removal of vinyl chloride monomer after polymerisation and also to achieve easy processing and dry blendable polymers. Amongst materials quoted as protective colloids are vinyl acetate-maleic anhydride copolymers, fatty acid esters of glycerol, ethylene glycol and pentaerythritol, and, more recently, mixed cellulose ethers and partially hydrolysed polyfvinyl acetate). Much recent emphasis has been on mixed systems. [Pg.316]

Filter aids should have low specific surface, since hydraulic resistance results from frictional losses incurred as liquid flows past particle surfaces. Specific surface is inversely proportional to particle size. The rate of particle dispersity and the subsequent difference in specific surface determines the deviations in filter aid quality from one material to another. For example, most of the diatomite species have approximately the same porosity however, the coarser materials experience a smaller hydraulic resistance and have much less specific surface than the finer particle sizes. [Pg.107]

Producing a polystyrene (PS)-DVB copolymer of increasing porosity has been accomplished by dissolving 50-80% styrene, 10-50% divinylbenzene, and 30-70% of an inert organic liquid. Toluene is a solvent for the monomer but is a nonsolvent for the polymerized polymer. The monomer solution is then incorporated into water to form a dispersion of oil droplets followed by the polymerization of the suspended oil droplets from the aqueous medium into the polymer (21). [Pg.8]

Scanning electron microscopy (thickness topography porosity barrier layers fracture sections) Energy dispersive X-ray analysis (EDX)... [Pg.30]

The standard Rodbard-Ogston-Morris-Killander [326,327] model of electrophoresis which assumes that u alua = D nlDa is obtained only for special circumstances. See also Locke and Trinh [219] for further discussion of this relationship. With low electric fields the effective mobility equals the volume fraction. However, the dispersion coefficient reduces to the effective diffusion coefficient, as determined by Ryan et al. [337], which reduces to the volume fraction at low gel concentration but is not, in general, equal to the porosity for high gel concentrations. If no electrophoresis occurs, i.e., and Mp equal zero, the results reduce to the analysis of Nozad [264]. If the electrophoretic mobility is assumed to be much larger than the diffusion coefficients, the results reduce to that given by Locke and Carbonell [218]. [Pg.599]

Overall platelet dimensions of mineral aurichalcite did not appear to change during calcination, but became polycrystalline and porous. By dark field Imaging in the TEM, the ZnO particles were observed to be uniformly and highly dispersed. The porosity can be accounted for by the approximately threefold increase in density of Zn atoms upon decomposition of aurichalcite to ZnO. For this density change to occur with a constant overall platelet volume, pores must form. [Pg.360]

The figure shows the ratio of the widths of initially delta-like concentration tracers at the reactor exits as a function of the micro-channel Peclet number for different values of the porosity. Taking a value of = 0.4 as standard, it becomes apparent that the dispersion in the micro-channel reactor is smaller than that in the fixed-bed reactor in a Peclet number range from 3 to 100. Minimum dispersion is achieved at a Peclet number of about 14, where the tracer width in the micro-channel reactor is reduced by about 40% compared with its fixed-bed counterpart. Hence the conclusion may be drawn that micro-channel reactors bear the potential of a narrower residence time than fixed-bed reactors, where again it should be stressed that reactors with equivalent chemical conversion were chosen for the comparison. [Pg.35]

The washing of filter cake is carried out to remove liquid impurities from valuable solid product or to increase recovery of valuable filtrates from the cake. Wakeman (1990) has shown that the axial dispersion flow model, as developed in Sec. 4.3.6, provides a fundamental description of cake washing. It takes into account such situations as non-uniformities in the liquid flow pattern, non-uniform porosity distributions, the initial spread of washing liquid onto the topmost surface of the filter cake and the desorption of solute from the solid surfaces. [Pg.578]

Program FILTWASH models the dimensionless filtration wash curves for the above case of a filter cake with constant porosity, axial dispersion in the liquid flow and desorption of solute from the solid particles of the filter bed (Boyd, 1993). [Pg.579]

J. Gotz, K. Zick, C. Heinen, T. Konig 2002, (Visualisation of flow processes in packed beds with NMR imaging Determination of the local porosity, velocity vector and local dispersion coefficients), Chem. Eng. Process. 41 (7), 611-630. [Pg.76]

The lack of a method to determine the spatial distributions of permeability has severely limited our ability to understand and mathematically describe complex processes within permeable media. Even the degree of variation of intrinsic permeability that might be encountered in naturally occurring permeable media is unknown. Samples with permeability variations will exhibit spatial variations in fluid velocity. Such variations may significantly affect associated physical phenomena, such as biological activity, dispersion and colloidal transport. Spatial variations in the porosity and permeability, if not taken into account, can adversely affect the determination of any associated properties, including multiphase flow functions [16]. [Pg.369]


See other pages where Dispersion porosity is mentioned: [Pg.1472]    [Pg.6]    [Pg.1472]    [Pg.6]    [Pg.347]    [Pg.329]    [Pg.373]    [Pg.232]    [Pg.127]    [Pg.21]    [Pg.21]    [Pg.259]    [Pg.212]    [Pg.412]    [Pg.143]    [Pg.471]    [Pg.248]    [Pg.1877]    [Pg.432]    [Pg.295]    [Pg.239]    [Pg.732]    [Pg.114]    [Pg.360]    [Pg.178]    [Pg.223]    [Pg.992]    [Pg.121]    [Pg.198]    [Pg.599]    [Pg.439]    [Pg.42]    [Pg.579]    [Pg.156]    [Pg.254]    [Pg.170]    [Pg.601]    [Pg.804]    [Pg.190]   
See also in sourсe #XX -- [ Pg.28 , Pg.29 ]




SEARCH



© 2024 chempedia.info