Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dispersed porous particles

Glaser and Lichtenstein (G3) measured the liquid residence-time distribution for cocurrent downward flow of gas and liquid in columns of -in., 2-in., and 1-ft diameter packed with porous or nonporous -pg-in. or -in. cylindrical packings. The fluid media were an aqueous calcium chloride solution and air in one series of experiments and kerosene and hydrogen in another. Pulses of radioactive tracer (carbon-12, phosphorous-32, or rubi-dium-86) were injected outside the column, and the effluent concentration measured by Geiger counter. Axial dispersion was characterized by variability (defined as the standard deviation of residence time divided by the average residence time), and corrections for end effects were included in the analysis. The experiments indicate no effect of bed diameter upon variability. For a packed bed of porous particles, variability was found to consist of three components (1) Variability due to bulk flow through the bed... [Pg.98]

Glaser and Litt (G4) have proposed, in an extension of the above study, a model for gas-liquid flow through a b d of porous particles. The bed is assumed to consist of two basic structures which influence the fluid flow patterns (1) Void channels external to the packing, with which are associated dead-ended pockets that can hold stagnant pools of liquid and (2) pore channels and pockets, i.e., continuous and dead-ended pockets in the interior of the particles. On this basis, a theoretical model of liquid-phase dispersion in mixed-phase flow is developed. The model uses three bed parameters for the description of axial dispersion (1) Dispersion due to the mixing of streams from various channels of different residence times (2) dispersion from axial diffusion in the void channels and (3) dispersion from diffusion into the pores. The model is not applicable to turbulent flow nor to such low flow rates that molecular diffusion is comparable to Taylor diffusion. The latter region is unlikely to be of practical interest. The model predicts that the reciprocal Peclet number should be directly proportional to nominal liquid velocity, a prediction that has been confirmed by a few determinations of residence-time distribution for a wax desulfurization pilot reactor of 1-in. diameter packed with 10-14 mesh particles. [Pg.99]

To maximise separation efficiency requires low H and high N values. In general terms this requires that the process of repeated partitioning and equilibration of the migrating solute is accomplished rapidly. The mobile and stationary phases must be mutually well-dispersed. This is achieved by packing the column with fine, porous particles providing a large surface area between the phases (0.5-4 m2/g in GC, 200-800 m2/g in LC). Liquid stationary phases are either coated as a very thin film (0.05-1 pm) on the surface of a porous solid support (GC) or chemically bonded to the support surface as a mono-molecular layer (LC). [Pg.1081]

Lastly, particle engineering as a method to improve suspension stability may be an alternative. Weers et al. and Dellamary et al. describe the use of hollow porous particles to decrease the attractive forces between particles in suspension (43,51). The similarities between the particles and the dispersing medium (the propellant system enters and fills the porous particles) reduces the effective Hamaker constant that corresponds to forces of attraction, and also makes the density difference between the propellant and the particles smaller. The FPF of these aerosols was reported to be around 70%. [Pg.238]

As in fluidized bed adsorption, proteins are bound to porous particles as well, these parameters will remain important and must be considered when describing protein adsorption to fluidized beds. As mentioned above, fluidizing the adsorbent allows free movement of the particles within the adsorbent bed, so dispersion in the solid phase is another component determining process performance. [Pg.201]

The reduction of rhenium salt in a PAN matrix and the formation of the polyconjugated polymer system proceed simultaneously and interdependently during IR-pyrolysis of a film. As result the thin film of carbon with ultra dispersed metal particles is formed on a surface of porous support (Fig. 2). The thickness of defectless Re-containing carbon film was 300 - 500 nm. The size of metallic particles was proved to be from 3 to 10 nm. The average content of rhenium in a metal-carbon composition was about 5 mass %. [Pg.731]

If the bed is made of non porous particles and if axial dispersion in the bed is negligible, the mass balance for the oil in solvent phase is given by ... [Pg.526]

The elimination or estimation of the axial dispersion contribution presents a more difficult problem. Established correlations for the axial dispersion coefficient are notoriously unreliable for small particles at low Reynolds number(17,18) and it has recently been shown that dispersion in a column packed with porous particles may be much greater than for inert non-porous particles under similar hydrodynamic conditions(19>20). one method which has proved useful is to make measurements over a range of velocities and plot (cj2/2y ) (L/v) vs l/v2. It follows from eqn. 6 that in the low Reynolds number region where Dj. is essentially constant, such a plot should be linear with slope Dj, and intercept equal to the mass transfer resistance term. Representative data for several systems are shown plotted in this way in figure 2(21). CF4 and iC io molecules are too large to penetrate the 4A zeolite and the intercepts correspond only to the external film and macropore diffusion resistance which varies little with temperature. [Pg.349]

Cross-linked polystyrene porous particles (with 21 mol% DVB) have been prepared by the concentrated emulsion polymerization method, using either toluene or decane as the porogen and an aqueous solution of SDS as the continuous phase. Since toluene is a good solvent for polystyrene while decane is a nonsolvent , the morphologies obtained in the two cases were different. The particles based on toluene (with a volume fraction of dispersed phase of 78%) have very small pores which could not be detected in the SEM pictures. The pore size distribution, which has sizes between 20 and 50 A and was determined with an adsorption analyzer, almost coincides with that in a previous study [49] in which porous polystyrene beads have been prepared by suspension polymerization. In contrast, the porous particles based on decane have pore sizes as large as 0.1-0.3 pm, which could be detected in the SEM pictures [44a], and also larger surface areas (47 m2 g ) than those based on toluene (25 m2 g ). The main difference between the concentrated emulsion polymerization and the suspension polymerization consists of the much smaller volume fraction of continuous phase used in the former procedure. The gel-like emulsion that constitutes the precursor in the former case contains polyhedral cells separated by thin films of continuous phase. The polymerization of the cells does not... [Pg.52]

Palladium nanoparticles vfith a size of a few nanometers supported on carbon are widely used as catalysts, for instance in three-way automotive exhaust catalysts and fuel cells, and can easily be prepared by impregnation of a porous support body with a precursor solution, followed by drying, decomposition of the precursor and, if necessary, reduction. It is well-known that the activity and selectivity of these catalysts for hydrogenation reactions depend on the palladium dispersion for particles sizes in the range 1-10 nm. It is, hence, not surprising that the interaction of Pd with hydrogen, and the infiuence of nanosizing, have been widely studied. [Pg.293]

There are four unknown parameters in the theoretical impulse response for porous particles, h(t) the pellet diffusion time, tdif (which contains the effective diffusion coefficient of the pair T-C, Dtc, td.fs R p/D.f( , R is the radius of the pellet equivalent sphere), the mean residence time of the carrier-gas in the interparticle space, tc (tc = v/L with the carrier gas linear interstitial velocity, v, and column length, L), Peclet number, Pe (Pe = L.v/E, with E the effective axial dispersion coefficient) and the adsorption parameter, 5q (see below). Because matching with four unknown parameters would give highly correlated parameters, it is better to determine some parameters independently,... [Pg.479]


See other pages where Dispersed porous particles is mentioned: [Pg.601]    [Pg.924]    [Pg.156]    [Pg.648]    [Pg.601]    [Pg.924]    [Pg.156]    [Pg.648]    [Pg.490]    [Pg.348]    [Pg.279]    [Pg.37]    [Pg.491]    [Pg.145]    [Pg.17]    [Pg.172]    [Pg.174]    [Pg.234]    [Pg.620]    [Pg.490]    [Pg.313]    [Pg.217]    [Pg.209]    [Pg.212]    [Pg.89]    [Pg.13]    [Pg.220]    [Pg.127]    [Pg.417]    [Pg.115]    [Pg.201]    [Pg.482]    [Pg.126]    [Pg.476]    [Pg.476]    [Pg.479]    [Pg.575]    [Pg.451]   


SEARCH



Dispersed porous particles reaction kinetics

Particle dispersed

Particle dispersibility

Particle dispersion

Porous particle

© 2024 chempedia.info