Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Direct effects metal complexes

The behaviour of natural ligands has been discussed in Section 4.3.3. In addition to the direct effect of complexation that is related to a decrease in the free ion activity, it has been shown that some ligands, in particular the HS, can be sorbed directly to biological surfaces, in the presence or absence of the trace metal [228,229]. This result is likely due to the fact that HS and similar macromolecules contain hydrophobic moieties that facilitate their adsorption to the plasma membrane and cell wall [157,230,231]. Because adsorption is expected to occur primarily with sites that are independent of the transporters,... [Pg.480]

In the pulp and paper industry, anionic and cationic acrylamide polymers are used as chemical additives or processing aids. The positive effect is achieved due to a fuller retention of the filler (basically kaoline) in the paper pulp, so that the structure of the paper sheet surface layer improves. Copolymers of acrylamide with vi-nylamine not only attach better qualities to the surface layer of.paper, they also add to the tensile properties of paper in the wet state. Paper reinforcement with anionic polymers is due to the formation of complexes between the polymer additive and ions of Cr and Cu incorporated in the paper pulp. The direct effect of acrylamide polymers on strength increases and improved surface properties of paper sheets is accompanied by a fuller extraction of metallic ions (iron and cobalt, in addition to those mentioned above), which improves effluent water quality. [Pg.71]

In a catalytic asymmetric reaction, a small amount of an enantio-merically pure catalyst, either an enzyme or a synthetic, soluble transition metal complex, is used to produce large quantities of an optically active compound from a precursor that may be chiral or achiral. In recent years, synthetic chemists have developed numerous catalytic asymmetric reaction processes that transform prochiral substrates into chiral products with impressive margins of enantio-selectivity, feats that were once the exclusive domain of enzymes.56 These developments have had an enormous impact on academic and industrial organic synthesis. In the pharmaceutical industry, where there is a great emphasis on the production of enantiomeri-cally pure compounds, effective catalytic asymmetric reactions are particularly valuable because one molecule of an enantiomerically pure catalyst can, in principle, direct the stereoselective formation of millions of chiral product molecules. Such reactions are thus highly productive and economical, and, when applicable, they make the wasteful practice of racemate resolution obsolete. [Pg.344]

In contrast to the effects obtained with viruses mentioned earlier, rous sarcoma virus (RSV) is inactivated by direct contact with 2 [81]. Evidence for the drug action by a chelate compound was obtained by using concentrations of 3a and copper(II) sulfate, neither of which individually affected enzyme activity or transforming abilities [82]. In a later study these workers showed that several metal complexes inhibit the RNA dependent DNA polymerases and the transforming ability of RSV, the most active compound being a 1 1 copper(II)... [Pg.8]

The information available is discussed in light of the effects of excitation energy and the environment on the photofragmentation process of several transition metal cluster complexes. The photochemical information provides a data base directly relevant to electronic structure theories currently used to understand and predict properties of transition metal complexes (1,18,19). [Pg.75]

Two possible roles for the metal ion in a template reaction have been delineated (Thompson Busch, 1964). First, the metal ion may sequester the cyclic product from an equilibrium mixture such as, for example, between products and reactants. In this manner the formation of the macrocycle is promoted as its metal complex. The metal ion is thus instrumental in shifting the position of an equilibrium - such a process has been termed a thermodynamic template effect. Secondly, the metal ion may direct the steric course of a condensation such that formation of the required cyclic product is facilitated. This process has been called the kinetic template effect. [Pg.28]

Electrochemical methods are available for the direct dehalogenation of organic halides to a limited extent fluorides and monochlorides are generally not reducible [1], In the presence of transition-metal complexes as mediators (Med), however, the electrolysis of halocarbons (RX) can be performed more effectively and selectively under various conditions [155-158]. Mediated electroreduction is most efficient when the electron transfer step E° (Med/Med -) is more negative than E° (RX/RX -) [157] (cf. Section 18.4.1). [Pg.532]

However, because of the mostly very slow electron transfer rate between the redox active protein and the anode, mediators have to be introduced to shuttle the electrons between the enzyme and the electrode effectively (indirect electrochemical procedure). As published in many papers, the direct electron transfer between the protein and an electrode can be accelerated by the application of promoters which are adsorbed at the electrode surface [27], However, this type of electrode modification, which is quite useful for analytical studies of the enzymes or for sensor applications is in most cases not stable and effective enough for long-term synthetic application. Therefore, soluble redox mediators such as ferrocene derivatives, quinoid compounds or other transition metal complexes are more appropriate for this purpose. [Pg.96]

In many planar metal complexes it is not possible to record an ENDOR spectrum which only contains contributions from Bo orientations in the complex plane. This is due to the fact that in the powder EPR spectrum the high- or low-field turning points may arise from extra absorption peakssl which do not correspond to directions of the principal axes. ENDOR spectra observed near the in-plane region of such a powder EPR spectrum are due to molecules oriented along a large number of B0 directions (in- and out-of-plane), so that the orientation selection technique is no longer effective. [Pg.27]

Once the required ligands have been obtained, the formation of complexes is usually straightforward. Metal complexes can often be prepared by direct reaction in solution between the ligand and a metal salt, generally at pHs above seven so that the hydroxypyranone or hydroxypyridinone is in its anionic form. There can be difficulties with purification, as solubility characteristics of ligands and their respective complexes may be inconveniently similar, but recrystallization is usually effective. In cases of difficulty sublimation may successfully separate unreacted ligand from the complex. [Pg.178]


See other pages where Direct effects metal complexes is mentioned: [Pg.127]    [Pg.2966]    [Pg.170]    [Pg.185]    [Pg.603]    [Pg.11]    [Pg.154]    [Pg.95]    [Pg.341]    [Pg.55]    [Pg.228]    [Pg.60]    [Pg.116]    [Pg.145]    [Pg.99]    [Pg.421]    [Pg.444]    [Pg.371]    [Pg.170]    [Pg.622]    [Pg.57]    [Pg.242]    [Pg.339]    [Pg.149]    [Pg.71]    [Pg.448]    [Pg.507]    [Pg.50]    [Pg.802]    [Pg.232]    [Pg.255]    [Pg.29]    [Pg.100]    [Pg.2]    [Pg.184]    [Pg.143]    [Pg.184]    [Pg.421]    [Pg.139]    [Pg.148]   
See also in sourсe #XX -- [ Pg.364 , Pg.365 , Pg.366 ]




SEARCH



Complexation direction

Direct effects

Direct metalation

Direct metallation

Directed ortho metalation complex-induced proximity effect

Directing effect

Directional effect

Directive effects

Metallation directed

© 2024 chempedia.info