Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dipoles ideal

There are three broad types of intermolecular forces of adhesion and cohesion (7) quantum mechanical forces, pure electrostatic forces, and polarization forces. Quantum mechanical forces account for covalent bonding. Pure electrostatic interactions include Coulomb forces between charged ions, permanent dipoles, and quadrupoles. Polarization forces arise from dipole moments induced by the electric fields of nearby charges and other permanent and induced dipoles. Ideally, the forces involved in the interaction at a release interface must be the weakest possible. These are the polarization forces known as London or dispersion forces that arise from interactions of temporary dipoles caused by fluctuations in electron density. They are common to all matter and their energies range from 0.1 to 40 kJ/mol. Solid surfaces with the lowest dispersion-force interactions are those that comprise aliphatic hydrocarbons, and fluorocarbons, and that is why such materials dominate the classification table (Table 1) and the surface energy table (Table 2). [Pg.7057]

Especially with LTG GaAs, materials became available that were nearly ideal for time-resolved THz spectroscopy. Due to the low growth temperature and the slight As excess incorporated, clusters are fonned which act as recombination sites for the excited carriers, leading to lifetimes of <250 fs [45], With such recombination lifetunes, THz radiators such as dipole anteimae or log-periodic spirals placed onto optoelectronic substrates and pumped with ultrafast lasers can be used to generate sub-picosecond pulses with optical bandwidths of 2-4 THz. Moreover, coherent sub-picosecond detection is possible, which enables both... [Pg.1249]

The raie gas atoms reveal through their deviation from ideal gas behavior that electrostatics alone cannot account for all non-bonded interactions, because all multipole moments are zero. Therefore, no dipole-dipole or dipole-induced dipole interactions are possible. Van der Waals first described the forces that give rise to such deviations from the expected behavior. This type of interaction between two atoms can be formulated by a Lennaid-Jones [12-6] function Eq. (27)). [Pg.346]

The intramolecular cycloaddition of a nitrile oxide (a 1,3-dipole) to an alkene is ideally suited for the regio- and stereocontrolled synthesis of fused polycyclic isoxazolines.16 The simultaneous creation of two new rings and the synthetic versatility of the isoxa-zoline substructure contribute significantly to the popularity of this cycloaddition process in organic synthesis. In spite of its high degree of functionalization, aldoxime 32 was regarded as a viable substrate for an intramolecular 1,3-dipolar cycloaddition reaction. Indeed, treatment of 32 (see Scheme 17) with sodium hypochlorite... [Pg.550]

Carnie and Chan and Blum and Henderson have calculated the capacitance for an idealized model of an electrified interface using the mean spherical approximation (MSA). The interface is considered to consist of a solution of charged hard spheres in a solvent of hard spheres with embedded point dipoles, while the electrode is considered to be a uniformly charged hard wall whose dielectric constant is equal to that of the electrolyte (so that image forces need not be considered). [Pg.54]

The competition between the polar and steric dipoles of molecules may also lead to internal frustration. In this case, the local energetically ideal configuration cannot be extended to the whole space, but tends to be accomodated by the appearance of a periodic array of defects. For example, the presence of the strong steric dipole at the head of a molecule forming bilayers will induce local curvature. As the size of the curved areas increases, an increase in the corresponding elastic energy makes energetically preferable the... [Pg.211]

WATER IS AN IDEAL BIOLOGIC SOLVENT Water Molecules Form Dipoles... [Pg.5]

Replacement of gas by the nonpolar (e.g., hydrocarbon) phase (oil phase) has been sometimes used to modify the interactions among molecules in a spread film of long-chain substances. The nonpolar solvent/water interface possesses an advantage over that between gas and water in that cohesion (i.e., interactions between adsorbed molecules) due to dipole and van der Waals s forces is negligible. Thus, at the oil/water interfaces, the behavior of adsorbates is much more ideal, but quantitative interpretation may be uncertain, in particular for the higher chains, which are predominantly dissolved in the oil phase to an unknown extent. The oil phase is poured on the surface of an aqueous solution. Thus, the hydrocarbon, such as heptane or decane, forms a membrane a few millimeters thick. It is thicker than the adsorbed monolayer. Owing to the small difference in dielectric constant between the air and a hydrocarbon oil, the... [Pg.36]

Owing to the almost octahedral environment of the iron center, three out of six Fe-N stretching modes are invisible in NIS and IR spectra. Those modes that transform according to and Eg representations of the ideal octahedron do not contribute to the msd of the iron nucleus or to the variation of the electric dipole moment. Only the remaining three modes that transform according to Tiu representations can be observed in NIS- and IR spectra. These three modes, as obtained... [Pg.524]

In addition to the nonelectrostatic adsorptive force, there is an image force between a dipole and a metal, which will be present whenever charged or dipolar particles in a medium of one dielectric constant are near a region of another dielectric constant. If the metal is treated as an ideal conductor, the image-force contribution to the energy of a dipole in the electrolyte is proportional to p2j z3, where z is the distance of the dipole from the plane boundary of the metal (considered ideal, with no surface structure), and to 1 + cos2 0. This ideal term is, of course, the same for all metals. If... [Pg.7]

From the ideal gas equation, it is found that for 1 mole of gas, PV/KT = 1, which is known as the compressibility factor. For most real gases, there is a large deviation from the ideal value, especially at high pressure where the gas molecules are forced closer together. From the discussions in previous sections, it is apparent that the molecules of the gas do not exist independently from each other because of forces of attraction even between nonpolar molecules. Dipole-dipole, dipole-induced dipole, and London forces are sometimes collectively known as van der Waals forces because all of these types of forces result in deviations from ideal gas behavior. Because forces of attraction between molecules reduce the pressure that the gas exerts on the walls of the container, van der Waals included a correction to the pressure to compensate for the "lost" pressure. That term is written as w2a/V2, where n is the number of moles, a is a constant that depends on the nature of the gas, and V is the volume of the container. The resulting equation of state for a real gas, known as van der Waals equation, is written as... [Pg.191]

Vega, and coworkers as a sequence of well-placed ideal (i.e., infinitely strong) 7r-pulses serving to reintroduce the zero-quantum (ZQ) part of the homonuclear dipole-dipole coupling operator in a homonuclear two-spin system. The coherent averaging due to MAS is in the toggling frame of the n-pulses partially disrupted by a differential chemical shift term and thereby recoupling takes place. [Pg.15]

The dipole moment of LiF is only about 84% of the value expected for idealized unit point charges Qu = I Qf = 1 separated by Rcq. This reflects two factors (1) the actual charges on each ion are reduced by CT and (2) the actual electronic distributions cannot be represented as point charges, but are spatially distributed around the nuclei in accordance with the shapes of occupied orbitals. [Pg.88]


See other pages where Dipoles ideal is mentioned: [Pg.222]    [Pg.176]    [Pg.381]    [Pg.21]    [Pg.113]    [Pg.277]    [Pg.52]    [Pg.169]    [Pg.35]    [Pg.270]    [Pg.425]    [Pg.473]    [Pg.5]    [Pg.418]    [Pg.17]    [Pg.325]    [Pg.277]    [Pg.4]    [Pg.5]    [Pg.20]    [Pg.54]    [Pg.76]    [Pg.695]    [Pg.668]    [Pg.261]    [Pg.187]    [Pg.11]    [Pg.15]    [Pg.60]    [Pg.44]    [Pg.78]    [Pg.452]    [Pg.598]    [Pg.598]   
See also in sourсe #XX -- [ Pg.4 , Pg.20 ]




SEARCH



Ideal dipole approximation

© 2024 chempedia.info