Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dipole moments substituent effect

Alkenes resemble alkanes m most of their physical properties The lower molecular weight alkenes through 4 are gases at room temperature and atmospheric pressure The dipole moments of most alkenes are quite small Among the 4 isomers 1 butene cis 2 butene and 2 methylpropene have dipole moments m the 0 3-05 D range trans 2 butene has no dipole moment Nevertheless we can learn some things about alkenes by looking at the effect of substituents on dipole moments... [Pg.196]

Experimental measurements of dipole moments give size but not direction We normally deduce the overall direction by examining the directions of individual bond dipoles With alkenes the basic question concerns the alkyl groups attached to C=C Does an alkyl group donate electrons to or withdraw electrons from a double bond d This question can be approached by comparing the effect of an alkyl group methyl for exam pie with other substituents... [Pg.196]

Diels-Alder reactions, 4, 842 flash vapour phase pyrolysis, 4, 846 reactions with 6-dimethylaminofuKenov, 4, 844 reactions with JV,n-diphenylnitrone, 4, 841 reactions with mesitonitrile oxide, 4, 841 structure, 4, 715, 725 synthesis, 4, 725, 767-769, 930 theoretical methods, 4, 3 tricarbonyl iron complexes, 4, 847 dipole moments, 4, 716 n-directing effect, 4, 44 2,5-disubstituted synthesis, 4, 116-117 from l,3-dithiolylium-4-olates, 6, 826 electrocyclization, 4, 748-750 electron bombardment, 4, 739 electronic deformation, 4, 722-723 electronic structure, 4, 715 electrophilic substitution, 4, 43, 44, 717-719, 751 directing effects, 4, 752-753 fluorescence spectra, 4, 735-736 fluorinated derivatives, 4, 679 H NMR, 4, 731 Friedel-Crafts acylation, 4, 777 with fused six-membered heterocyclic rings, 4, 973-1036 fused small rings structure, 4, 720-721 gas phase UV spectrum, 4, 734 H NMR, 4, 7, 728-731, 939 solvent effects, 4, 730 substituent constants, 4, 731 halo... [Pg.894]

Figure 4.3. Energy versus bond rotation in methylsuccinic acid (schematic). The diagram shows the greater stability of staggered as compared with eclipsed forms, and the effect of size and dipole moment of substituents on the barriers. The slope of the curve at any point represents the force opposing rotation there. ( = energy of activation of rotation.) (After Gordon )... Figure 4.3. Energy versus bond rotation in methylsuccinic acid (schematic). The diagram shows the greater stability of staggered as compared with eclipsed forms, and the effect of size and dipole moment of substituents on the barriers. The slope of the curve at any point represents the force opposing rotation there. ( = energy of activation of rotation.) (After Gordon )...
The dipole moment of tributylpliosphine varies from 1.49 to 2.4 D according to the solvent used. Inductive effects in phosphines have been estimated by comparing the calculated and observed dipole moments, and the apparent dipole moment due to the lone electron pair on phosphorus has been estimated. A method of calculating the hybridization of the phosphorus atom in terms of bond angles is suggested which leads to a linear relationship between hybridization ratio and lone electron pair moment. The difference between experimental and calculated dipole moments for para-substitued arylphosphines, phosphine sulphides, and phosphinimines has been used to estimate mesomeric transfer of electrons to phosphorus. [Pg.283]

Pople, J. A., and M. Gordon. 1967. Molecular Orbital Theory of the Electronic Structure of Organic Compounds. I. Substituent Effects and Dipole Moments. J. Am. Chem. Soc. 89, 4253-4261. [Pg.156]

It should be pointed out that there are some methylene cyclopropene derivatives, whose stability is ascribed mainly to inductive effects brought about by strongly electron-withdrawing substituents. Thus, l,2-bis(p-tolyl)-4,4-(bis-trifluoromethyl)-triafulvene (63) synthesized recently by Agranat66 is a perfectly stable molecule with a dipole moment (7.42 D) comparable to that of l,2-diphenyl-4,4-dicyano-triafulvene (64) of the resonance-stabilized type (l)67 (7.9 D). [Pg.20]

Based on the fundamental dipole moment concepts of mesomeric moment and interaction moment, models to explain the enhanced optical nonlinearities of polarized conjugated molecules have been devised. The equivalent internal field (EIF) model of Oudar and Chemla relates the j8 of a molecule to an equivalent electric field ER due to substituent R which biases the hyperpolarizabilities (28). In the case of donor-acceptor systems anomalously large nonlinearities result as a consequence of contributions from intramolecular charge-transfer interaction (related to /xjnt) and expressions to quantify this contribution have been obtained (29). Related treatments dealing with this problem have appeared one due to Levine and Bethea bearing directly on the EIF model (30), another due to Levine using spectroscopically derived substituent perturbations rather than dipole moment based data (31.) and yet another more empirical treatment by Dulcic and Sauteret involving reinforcement of substituent effects (32). [Pg.64]

Some substituents induce remarkably different electronic behaviors on the same aromatic system (8). Let us consider, for example, the actions of substituents on an aromatic electron system. Some substituents have a tendency to enrich their electronic population (acceptors), while others will give away some of it (donors). Traditionaly, quantum chemists used to distinguish between long range (mesomeric) effects, mainly u in nature, and short range (inductive) effects, mainly a. The nonlinear behavior of a monosubstituted molecule can be accounted for in terms of the x electron dipole moment. Examples of donor and acceptor substituents can be seen on figure 1. [Pg.84]

These interactions (dd, di, ii) are a function of dipole moment and polarizability. It has been shown that the dipole moment cannot be replaced entirely by the use of electrical effect substituent constants as parameters52. This is because the dipole moment has no sign. Either an overall electron donor group or an overall electron acceptor group may have the same value of /x. It has also been shown that the bond moment rather than the molecular dipole moment is the parameter of choice. The dipole moments of MeX and PhX were taken as measures of the bond moments of substituents bonded to sp3- and sp2-hybridized carbon atoms, respectively, of a skeletal group. Application to substituents bonded to sp-hybridized carbon atoms should require a set of dipole moments for substituted ethynes. [Pg.712]


See other pages where Dipole moments substituent effect is mentioned: [Pg.379]    [Pg.379]    [Pg.196]    [Pg.199]    [Pg.368]    [Pg.309]    [Pg.16]    [Pg.33]    [Pg.425]    [Pg.145]    [Pg.196]    [Pg.338]    [Pg.78]    [Pg.67]    [Pg.321]    [Pg.431]    [Pg.86]    [Pg.431]    [Pg.279]    [Pg.43]    [Pg.77]    [Pg.150]    [Pg.52]    [Pg.61]    [Pg.659]    [Pg.301]    [Pg.146]    [Pg.487]    [Pg.142]    [Pg.146]    [Pg.251]   
See also in sourсe #XX -- [ Pg.785 ]




SEARCH



Dipole effect

Dipole moment effects

Effective dipole moments

© 2024 chempedia.info