Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereochemistry 1,3-dipolar cycloadditions

The stereochemistry of the 1,3-dipolar cycloaddition reaction is analogous to that of the Diels-Alder reaction and is a stereospecific syn addition. Diazomethane, for example, adds stereospecifically to the diesters 43 and 44 to yield the pyrazolines 45 and 46, respectively. [Pg.646]

The 1,3-dipolar cycloaddition reaction of nitrones with alkenes gives isoxazolidines is a fundamental reaction in organic chemistry and the available literature on this topic of organic chemistry is vast. In this reaction until three contiguous asymmetric centers can be formed in the isoxazolidine 17 as outlined for the reaction between a nitrone and an 1,2-disubstituted alkene. The relative stereochemistry at C-4 and C-5 is always controlled by the geometric relationship of the substituents on the alkene (Scheme 8.6). [Pg.321]

Among the many recent applications to natural products, syntheses of pyrrolizidine and indolizidine alkaloids that take advantage of the 1,3-dipolar cycloaddition methodology have been reviewed [8]. The regio- and stereochemistry [9] as well as synthetic appHcations [10] of nitrile oxide cycloadditions have also been discussed. [Pg.2]

Two issues are of essential for predicting the structure of 1,3-DCA products (1) What is the regiochemistry and (2) What is the stereochemistry Many specific examples demonstrate that 1,3-dipolar cycloaddition is a stereospecific syn addition with respect to the dipolarophile, as expected for a concerted process. [Pg.528]

To control the stereochemistry of 1,3-dipolar cycloaddition reactions, chiral auxiliaries are introduced into either the dipole-part or dipolarophile. A recent monograph covers this topic extensively 70 therefore, only typical examples are presented here. Alkenes employed in asymmetric 1,3-cycloaddition can be divided into three main groups (1) chiral allylic alcohols, (2) chiral amines, and (3) chiral vinyl sulfoxides or vinylphosphine oxides.63c... [Pg.251]

Dipolar addition to nitroalkenes provides a useful strategy for synthesis of various heterocycles. The [3+2] reaction of azomethine ylides and alkenes is one of the most useful methods for the preparation of pyrolines. Stereocontrolled synthesis of highly substituted proline esters via [3+2] cycloaddition between IV-methylated azomethine ylides and nitroalkenes has been reported.147 The stereochemistry of 1,3-dipolar cycloaddition of azomethine ylides derived from aromatic aldehydes and L-proline alkyl esters with various nitroalkenes has been reported. Cyclic and acyclic nitroalkenes add to the anti form of the ylide in a highly regioselective manner to give pyrrolizidine derivatives.148... [Pg.274]

Intermolecular Cycloaddition at the C=C Double Bond Addition at the C=C double bond is the main type of 1,3-cycloaddition reactions of nitrile oxides. The topic was treated in detail in Reference 157. Several reviews appeared, which are devoted to problems of regio- and stereoselectivity of cycloaddition reactions of nitrile oxides with alkenes. Two of them deal with both inter- and intramolecular reactions (158, 159). Important information on regio-and stereochemistry of intermolecular 1,3-dipolar cycloaddition of nitrile oxides to alkenes was summarized in Reference 160. [Pg.21]

The 1,3-dipolar cycloaddition reactions of the chiral 3-benzoyl-4-methylene-2-phenyloxazolidin-5-one 118 and nitrile oxides RCNO (R = Ph, Me) had the expected stereochemistry, addition of the 1,3-dipole having occurred from the less hindered n-face of the exocyclic methylene of 118 (282). [Pg.43]

The relative stereochemistry of tricycle-fused isoxazolines resulting from 1,3-dipolar cycloaddition of cyclo-1,3-diene-tethered nitrile oxides is cis-cis, whereas from cyclohepta-l,3,5-triene-tethered nitrile oxides the cis-trans isomer predominates (412). [Pg.74]

A total synthesis of (+ )-vinblastine widely used in cancer chemotherapy, has been reported. It includes the synthesis of (-)-vindoline. 1,3-Dipolar cycloaddition of a nitrile oxide has played an important role in the preparation of the indoloazacycloundecane moiety, whose coupling with (-)-vindoline occurs with the desired stereochemistry, leading to an intermediate readily transformed to the target (+ )-vinblastine (492). [Pg.100]

Main Aspects of Chemistry and Stereochemistry of Cyclic Nitroso Acetals Chemistry of cyclic nitroso acetals or nitrosals (the term was introduced by Prof. Seebach) has attracted interest only after the discovery of the 1,3-dipolar cycloaddition reaction of nitronates with olefins in 1962 by the research group of Prof. Tartakovsky. (Principal data on nitroso acetals up to 1990 were summarized in the review by Rudchenko (395).)... [Pg.570]

Derivative 165 was treated with tosyl azide at room temperature for 48 h to give 167. Formation of this product was rationalized by a 1,3-dipolar cycloaddition with participation of the C=C bond in the pyrimidine ring in 165 to form a cycloadduct 166 at first, which underwent a [l,2]-methyl shift and a nitrogen elimination to yield 167. Stmcture elucidation of this product revealed the relative rzr-stereochemistry of the phenyl and methyl substituents. [Pg.691]

A full account of the preparation and 1,3-dipolar cycloadditions of the meso-ionic l,3-thiazol-4-ones (114) has now been published. A detailed chemical and spectroscopic study of the stereochemistry of the 1 1 adducts of the l,3-thiazol-4-ones (114) with olefinic 1,3-dipolarophiles has been reported. ... [Pg.114]

An impressive enantiopure synthesis of Amaryllidaceae alkaloids has been achieved through the formation of sugar-derived homochiral alkenyl nitrone 265 (Fig. 1.7).[280] While this reagent required lengthy preparation, it underwent an intramolecular dipolar cycloaddition to establish the required stereochemistry of the polycyclic pyrrolidine skeleton of (—)-haemanthidine (266), which was converted to (+)-pretazettine and (+)-tazettine by established procedures (281). [Pg.46]

At about the same time, Wenkert and c-workers (75) reported a similar smdy into the intramolecular 1,3-dipolar cycloaddition of 2-alkenoyl-aziridine derived azomethine ylides. Thermolysis of 231 at moderate temperature (85 °C) produced 232 as a single isomer in 58% yield. Similarly, 233 furnished 234 in 67% yield. In each case, the same stereoisomers were produced regardless of the initial stereochemistry of the initial aziridine precursors. However, the reaction proved to be sensitive to both the substituents of the aziridine and tether length, as aziridines 235 and 236 furnished no cycloadducts, even at 200 °C (Scheme 3.79). [Pg.220]

It should be noted, however, that the 1,3-dipolar cycloaddition chemistry of diazo compounds has been used much less frequently for the synthesis of natural products than that of other 1,3-dipoles. On the other hand, several recent syntheses of complex molecules using diazo substrates have utilized asymmetric induction in the cycloaddition step coupled with some known diazo transformation, such as the photochemical ring contraction of A -pyrazolines into cyclopropanes. This latter process often occurs with high retention of stereochemistry. Another useful transformation involves the conversion of A -pyrazolines into 1,3-diamines by reductive ring-opening. These and other results show that the 1,3-dipolar cycloaddition chemistry of diazo compounds can be extremely useful for stereoselective target-oriented syntheses and presumably we will see more applications of this type in the near future. [Pg.610]

The stereochemistry of 1,3-dipolar cycloadditions of azomethine ylides with alkenes is more complex. In this reaction, up to four new chiral centers can be formed and up to eight different diastereomers may be obtained (Scheme 12.4). There are three different types of diastereoselectivity to be considered, of which the two are connected. First, the relative geometry of the terminal substituents of the azomethine ylide determine whether the products have 2,5-cis or 2,5-trans conformation. Most frequently the azomethine ylide exists in one preferred configuration or it shifts between two different forms. The addition process can proceed in either an endo or an exo fashion, but the possible ( ,Z) interconversion of the azomethine ylide confuses these terms to some extent. The endo-isomers obtained from the ( , )-azomethine ylide are identical to the exo-isomers obtained from the (Z,Z)-isomer. Finally, the azomethine ylide can add to either face of the alkene, which is described as diastereofacial selectivity if one or both of the substrates are chiral or as enantioselectivity if the substrates are achiral. [Pg.821]

In order to control the stereochemistry of 1,3-dipolar cycloadditions involving this type of nitrone, the Cu(OTQ2-BOX complex 238 was found to be the most suitable catalyst (Scheme 12.81) (367). The 1,3-dipolar cycloaddition of 256 with the electron-rich ethyl vinyl ether 232a as the dipolarophile in the presence of 25 mol% of 258 proceeded at room temperature to give a high conversion, an exo/ endo ratio of 84 16, and exo-251 was obtained with up to 93% ee. [Pg.877]

Nitrooxazoles 271a-C also react with electron-rich ynamines to yield isoxazo-lines. °° The proposed reaction mechanism involves the Michael addition of the ynamine to give 275, followed by rearrangement to a nitrile oxide 277. Intramolecular 1,3-dipolar cycloaddition of 277 accounts for the exclusive cis stereochemistry observed in the products 278a-c (Scheme 8.78). [Pg.410]


See other pages where Stereochemistry 1,3-dipolar cycloadditions is mentioned: [Pg.28]    [Pg.88]    [Pg.210]    [Pg.211]    [Pg.214]    [Pg.233]    [Pg.1335]    [Pg.256]    [Pg.269]    [Pg.143]    [Pg.31]    [Pg.46]    [Pg.380]    [Pg.432]    [Pg.201]    [Pg.140]    [Pg.8]    [Pg.610]    [Pg.39]    [Pg.44]    [Pg.809]    [Pg.262]    [Pg.28]    [Pg.88]    [Pg.49]    [Pg.54]    [Pg.656]    [Pg.494]   
See also in sourсe #XX -- [ Pg.528 ]




SEARCH



1.3- dipolar cycloaddition reactions stereochemistry

Cycloaddition stereochemistry

Cycloadditions stereochemistry

Stereochemistry of 1,3-dipolar cycloaddition

© 2024 chempedia.info