Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1.3- Dipolar cycloadditions methyl acrylate

Pyrrolidines have been prepared by 1,3-dipolar cycloaddition of N-(benzyli-dene)trimethylsilylamine/TMSOf 20 and methyl acrylate, N-methylmaleimide, or dimethyl maleate [35]. More recently, methyl trans-3-cyanociruiamate 1479 was reacted with N-benzyl-N-(trimethylsilylmethyl)aminomethyl methyl ether 1480 and trifluoroacetic acid in CH2CI2 at 0°C and 24°C to afford, via 1481, the pyrrolidine derivative 1482 in high yield and MeOSiMe3 13a [35a] (Scheme 9.20). Several... [Pg.225]

Scheme 3.7 1,3-dipolar cycloaddition reaction of N-benzyl-C(2-Pyridyl) nitrone and methyl acrylate. [Pg.151]

Dipolarophile D6. A complete theoretical study of the 1,3-dipolar cycloaddition reaction of D-glyceraldehyde nitrone (N) to methyl acrylate (MA) has been... [Pg.335]

Dipolar cycloaddition reactions between three A-benzyl-C-glycosyl nitrones and methyl acrylate afforded key intermediates for the synthesis of glyco-syl pyrrolidines. It was found that furanosyl nitrones (574) and (575) reacted with methyl acrylate to give mixtures of all possible 3,5-disubstituted isoxazolidines (577) and (578). On the other hand, the reaction with pyranosyl nitrone (576) was much more selective and cycloaddition at ambient temperatures afforded only one of the possible Re-endo adducts (579a). The obtained isoxazolidines were transformed into the corresponding (V-benzyl-3-hydroxy-2-pyrrolidinones (580—582) on treatment with Zn in acetic acid (Scheme 2.264) (773). [Pg.338]

TABLE 2.32. DIPOLAR CYCLOADDITIONS OF MONOSUBSTITUTED SILYL NITRONATES WITH METHYL ACRYLATE... [Pg.118]

In addition, phenylsufonylallene (110), a,(3-unsaturated phosphonates (111), and alkenes with perfluorinated substituents (112) are all useful dipolarophiles. The yields observed with methyl 2-propenoate are significantly lower than those with the corresponding acrylate (entries 7 and 9), because of the additional substituent. On the other hand, the dipolar cycloadditions with either ethyl vinyl ether, 1-hexene, cyclohexene, or a trisubstituted dipolarophile provide the corresponding isoxazolidines in either low yields or not at all (18). [Pg.119]

The cycloaddition of substituted acrylates has been investigated with cyclic nitronate 24 (Table 2.49) (14). The cycloaddition of a 1,1-disubstituted dipolar-ophile (entry 2), proceeds in good yield, but both 1,2-disubstituted alkenes fail to react. The effect of substitution pattern on the dipolarophile was investigated with a slightly more reactive nitronate (Table 2.50) (228). Less sterically demanding alkenes such as cyclohexene, cyclopentene, and methyl substituted styrenes react, albeit at elevated temperature. The only exception is the 1,1-disubstituted alkene (entry 4), which reacts at room temperature. Both stilbene and dimethyl fumarate fail to provide the desired cycloadduct. In a rare example of the dipolar cycloaddition of tetra-substituted alkenes, tetramethylethylene reacts at 50 °C over 3 days to give a small amount of the cycloadduct (entry 7). [Pg.141]

The number of investigations on the enantioselective dipolar cycloaddition of nitronates is still rather limited. In the case of simple alkyl nitronates, the facial selectivity is controlled solely by the steric environment about the two faces of the chiral unit. For example, the reaction of steroid dipolarophile 270 proceeds with the nitronate approaching the Re face of the alkene (Eq. 2.23) (234). The facial selectivity is controlled by the C(19) methyl group, which blocks the Si face of the dipolarophile. Similarly, exposure of 279 to ethyl acrylate at 40 °C for 24 h, provides a single nitroso acetal (Scheme 2.21) (242). The facial selectivity is presumed to arise from steric shielding by the menthol group, however the full stereostructure has not been established. [Pg.146]

Of greater synthetic interest is asymmetric induction by the use of chiral catalysis. Grigg was the first to report chiral catalysis of 1,3-dipolar cycloadditions in 1991 (101). A study of metal salts and chiral ligands revealed that 358 underwent cycloaddition with methyl acrylate to furnish adduct 359 in the presence of C0CI2 and (IR, 25)-A-methylephedrine as the chiral ligand. The pyrrolidine product was isolated in 55% yield with an ee of 84%. The use of methyl acrylate as solvent led to an improved yield of 84% with an excellent ee of 96% (Scheme 3.121). [Pg.247]

The (ri" -diene tricarbonyliron)-substituted diazocarbonyl compounds 25 have been found to undergo 1,3-dipolar cycloaddition with methyl acrylate in high yield, but with little or no diastereoselectivity (56). Nevertheless, the facile chromatographic separation of the diastereomeric products 26a,b and 27a,b (Scheme 8.8), permits the synthesis of pure enantiomers when optically active diazo compounds (25) [enantiomeric excess (ee) >96%] are employed. When the reaction of 25 (R = C02Et) with methyl acrylate was carried out at 70 °C, cyclopropanes instead of A -pyrazolines were formed. The enantiomerically pure... [Pg.547]

Chiral aziridines having the chiral moiety attached to the nitrogen atom have also been applied for diastereoselective formation of optically active pyrrolidine derivatives. In the first example, aziridines were used as precursors for azomethine ylides (90-95). Photolysis of the aziridine 57 produced the azomethine ylide 58, which was found to add smoothly to methyl acrylate (Scheme 12.20) (91,93-95). The 1,3-dipolar cycloaddition proceeded with little or no de, but this was not surprising, as the chiral center in 58 is somewhat remote from the reacting centers... [Pg.831]

Garner et al. (90,320) used aziridines substituted with Oppolzer s sultam as azomethine ylide precursors. The azomethine ylide generated from 206 added to various electron-dehcient alkenes, such as dimethyl maleate, A-phenylmalei-mide, and methyl acrylate, giving the 1,3-dipolar cycloaddition product in good yields and up to 82% de (for A-phenylmaleimide). They also used familiar azomethine ylides formed by imine tautomerization (320). Aziridines such as 207 have also been used as precursors for the chiral azomethine ylides, but in reactions with vinylene carbonates, relatively low de values were obtained (Scheme 12.59) (92). [Pg.860]

Grigg and co-workers (383) found that chiral cobalt and manganese complexes are capable of inducing enantioselectivity in 1,3-dipolar cycloadditions of azomethine ylides derived from arylidene imines of glycine (Scheme 12.91). This work was published in 1991 and is the first example of a metal-catalyzed asymmetric 1,3-dipolar cycloaddition. The reaction of the azomethine yhde 284a with methyl acrylate 285 required a stoichiometric amount of cobalt and 2 equiv of the chiral ephedrine ligand. Up to 96% ee was obtained for the 1,3-dipolar cycloaddition product 286a. [Pg.885]


See other pages where 1.3- Dipolar cycloadditions methyl acrylate is mentioned: [Pg.130]    [Pg.213]    [Pg.241]    [Pg.241]    [Pg.69]    [Pg.150]    [Pg.194]    [Pg.218]    [Pg.165]    [Pg.145]    [Pg.169]    [Pg.377]    [Pg.8]    [Pg.168]    [Pg.24]    [Pg.67]    [Pg.117]    [Pg.885]    [Pg.34]    [Pg.77]    [Pg.126]    [Pg.731]    [Pg.348]    [Pg.1076]   
See also in sourсe #XX -- [ Pg.326 , Pg.327 , Pg.336 ]




SEARCH



3-Methyl acrylate, 1,3-dipolar cycloaddition

3-Methyl acrylate, 1,3-dipolar cycloaddition

Acrylates cycloaddition

Acrylates methyl acrylate

Methyl acrylate cycloaddition

© 2024 chempedia.info