Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1.3- dipolar cycloaddition dipolarophile

The reaction is illustrated by the intramolecular cycloaddition of the nitrilimine (374) with the alkenic double bond separated from the dipole by three methylene units. The nitrilimine (374) was generated photochemically from the corresponding tetrazole (373) and the pyrrolidino[l,2-6]pyrazoline (375) was obtained in high yield 82JOC4256). Applications of a variety of these reactions will be found in Chapter 4.36. Other aspects of intramolecular 1,3-dipolar cycloadditions leading to complex, fused systems, especially when the 1,3-dipole and the dipolarophile are substituted into a benzene ring in the ortho positions, have been described (76AG(E)123). [Pg.148]

Since 1,3-dipolar cycloadditions of diazomethane are HOMO (diazomethane)-LUMO (dipolarophile) controlled, enamines and ynamines with their high LUMO energies do not react (79JA3647). However, introduction of carbonyl functions into diazomethane makes the reaction feasible in these cases. Thus methyl diazoacetate and 1-diethylaminopropyne furnished the aminopyrazole (620) in high yield. [Pg.283]

Heterocyclics of all sizes, as long as they are unsaturated, can serve as dipolarophiles and add to external 1,3-dipoles. Examples involving small rings are not numerous. Thiirene oxides add 1,3-dipoles, such as di azomethane, with subsequent loss of the sulfur moiety (Section 5.06.3.8). As one would expect, unsaturated large heterocyclics readily provide the two-atom component for 1,3-dipolar cycloadditions. Examples are found in the monograph chapters, such as those on azepines and thiepines (Sections 5.16.3.8.1 and 5.17.2.4.4). [Pg.28]

There is a large elass of reactions known as 1,3-dipolar cycloaddition reactions that are analogous to the Diels-Alder reaction in that they are coneerted [4jc -I- 2jc] eyeloaddi-tions. ° These reactions can be represented as in the following diagram. The entity a—b—c is called the 1,3-dipolar molecule and d—e is the dipolarophile. [Pg.646]

The 1,3-dipolar molecules are isoelectronic with the allyl anion and have four electrons in a n system encompassing the 1,3-dipole. Some typical 1,3-dipolar species are shown in Scheme 11.4. It should be noted that all have one or more resonance structures showing the characteristic 1,3-dipole. The dipolarophiles are typically alkenes or alkynes, but all that is essential is a tc bond. The reactivity of dipolarophiles depends both on the substituents present on the n bond and on the nature of the 1,3-dipole involved in the reaction. Because of the wide range of structures that can serve either as a 1,3-dipole or as a dipolarophile, the 1,3-dipolar cycloaddition is a very useful reaction for the construction of five-membered heterocyclic rings. [Pg.646]

When both the 1,3-dipoIe and the dipolarophile are unsymmetrical, there are two possible orientations for addition. Both steric and electronic factors play a role in determining the regioselectivity of the addition. The most generally satisfactory interpretation of the regiochemistry of dipolar cycloadditions is based on frontier orbital concepts. As with the Diels-Alder reaction, the most favorable orientation is that which involves complementary interaction between the frontier orbitals of the 1,3-dipole and the dipolarophile. Although most dipolar cycloadditions are of the type in which the LUMO of the dipolarophile interacts with the HOMO of the 1,3-dipole, there are a significant number of systems in which the relationship is reversed. There are also some in which the two possible HOMO-LUMO interactions are of comparable magnitude. [Pg.647]

This type of reaction is represented by 1,3-dipolar cycloadditions, corresponding to one of the Huisgen categories (69MI1). The 1,3-dipolar cycloaddition corresponds to the interaction between a 1,3-dipole and a multiple system five-membered ring closure (Scheme 1). [Pg.3]

Dipolar cycloadditions of dihydropyrimidine-fused mesomeric betaines 389, 391 and 394 with different dipolarophiles afforded 6-oxo-6H-pyrido[l,2-n]pyrimidine-3-carboxylates 390, 392, 393 and 396 (97JOC3109). [Pg.250]

The importance of the 1,3-dipolar cycloaddition reaction for the synthesis of five-membered heterocycles arises from the many possible dipole/dipolarophile combinations. Five-membered heterocycles are often found as structural subunits of natural products. Furthermore an intramolecular variant makes possible the formation of more complex structures from relatively simple starting materials. For example the tricyclic compound 10 is formed from 9 by an intramolecular cycloaddition in 80% yield ... [Pg.76]

The class of 1,3-dipolar cycloadditions embraces a variety of reactions that can accomplish the synthesis of a diverse array of polyfunctional and stereochemically complex five-membered rings.3 The first report of a 1,3-dipolar cycloaddition of a nitrone (a 1,3-dipole) to phenyl isocyanate (a dipolarophile) came from Beckmann s laboratory in 1890,4 and a full 70 years elapsed before several investigators simultaneously reported examples of nitrone-olefin [3+2] cycloadditions.5 The pioneering and brilliant investigations of Huisgen and his coworkers6 have deepened our under-... [Pg.285]

Another example of a microwave-assisted 1,3-dipolar cycloaddition using azomethine ylides and a dipolarophile was the intramolecular reaction reported for the synthesis of hexahydrochromeno[4,3-fo]pyrrolidine 105 [70]. It was the first example of a solvent-free microwave-assisted intramoleciflar 1,3-dipolar cycloaddition of azomethine ylides, obtained from aromatic aldehyde 102 and IM-substituted glycinate 103 (Scheme 36). The dipole was generated in situ (independently from the presence of a base like TEA) and reacted directly with the dipolarophile present within the same molecifle. The intramolecu-... [Pg.233]

The reaction of the a-bromo aldoxime 52e (R = R = Me) with unsaturated alcohols has been extended to the heterocyclic systems furfuryl alcohols and 2-thiophene methanol [29b]. The furanyl and thiophenyl oximes 63a-c were treated with NaOCl and the resulting heterocyclic nitrile oxides were found to undergo spontaneous intramolecular dipolar cycloaddition to produce the unsaturated tricyclic isoxazolines 64a-c in high yield (Eq. 5). In these cases, the heterocyclic ring acts as the dipolarophile with one of the double bonds adding to the nitrile oxide [30]. [Pg.10]

The other reactant in a dipolar cycloaddition, usually an alkene or alkyne, is referred to as the dipolarophile. Other multiply bonded functional groups such as imine, azo, and nitroso can also act as dipolarophiles. The 1,3-dipolar cycloadditions involve four it electrons from the 1,3-dipole and two from the dipolarophile. As in the D-A reaction, the reactants approach one another in parallel planes to permit interaction between the tt and tt orbitals. [Pg.527]

Two issues are of essential for predicting the structure of 1,3-DCA products (1) What is the regiochemistry and (2) What is the stereochemistry Many specific examples demonstrate that 1,3-dipolar cycloaddition is a stereospecific syn addition with respect to the dipolarophile, as expected for a concerted process. [Pg.528]

Et2 group in 2-670. Since 2-670 contains both, a 1,3-dipole as well as a 1,3-dipolarophile moiety, it immediately undergoes a 1,3-dipolar cycloaddition to form the heterocyclic compound 2-671. [Pg.151]

To control the stereochemistry of 1,3-dipolar cycloaddition reactions, chiral auxiliaries are introduced into either the dipole-part or dipolarophile. A recent monograph covers this topic extensively 70 therefore, only typical examples are presented here. Alkenes employed in asymmetric 1,3-cycloaddition can be divided into three main groups (1) chiral allylic alcohols, (2) chiral amines, and (3) chiral vinyl sulfoxides or vinylphosphine oxides.63c... [Pg.251]

Hetero Diels-Alder reactions using nitroalkenes followed by 1,3-dipolar cycloadditions provide a useful strategy for the construction of polycyclic heterocycles, which are found in natural products. Denmark has coined the term tandem [4+2]/[3+2] cycloaddition of nitroalkenes for this type of reaction. The tandem [4+2]/[3+2] cycloaddition can be classified into four families as shown in Scheme 8.31, where A and D mean an electron acceptor and electron donor, respectively.149 In general, electron-rich alkenes are favored as dienophiles in [4+2] cycloadditions, whereas electron-deficient alkenes are preferred as dipolarophiles in [3+2] cycloadditions. [Pg.279]

Dipolar cycloaddition reaction of suitable dipolarophiles to azomethine imines is a well-known method leading to the pyrazolo[l,2-tf]pyrazole ring system and the methodology was duly reviewed in CHEC-II(1996) <1996CHEC-II(8)747>. During the covered period, some new applications have appeared. [Pg.412]

Compound 318 used as dipolarophile with ylide 315 (Ar = 2,4,6-Me3C6H2) gives spiro compound 319 (Equation 46) <2001HCA3403>. The 1,3-dipolar cycloaddition of 3-oxo-2-pyrazolidinium ylide 315 (Ar = Ph) with buckminsterfullerene Cgo yields new heterocyclic fullerene derivatives <1995TL2457>. [Pg.413]

Thermolysis of 6-substituted l,5-diazabicyclo[3.1.0]hexanes 326, easily available from 325, leads to a diaziridine ring opening and to the intermediate formation of labile azomethine imines 327. These compounds can be stabilized by a proton shift to form 1-substituted 2-pyrazolines 328. However, when the thermolysis is carried out in the presence of a 1,3-dipolarophile, the corresponding products of dipolar cycloaddition can be obtained. For example, iV-arylmaleimides provide mixtures of the major trans- and minor air-products 329 and 330, respectively (Scheme 47) C1999RJO110, 2001RJ0841, 2003RJ01338, 2004RJ067>. [Pg.414]

H(65)1889, 2005EJO3553>. Starting dihydro[l,2,4]triazolo[3, 4-4]benzo[l,2,4]triazines 482 readily react with aromatic aldehydes to yield iminium salts 483. These salts treated with a base (e.g., triethylamine) are deprotonated to reactive 1,3-dipolar azomethine imines 484. In contrast to related five-membered heterocycles, these compounds are relatively unstable on storage in the solid form and particularly in solution. Fortunately, this obstacle can be easily circumvented by their in situ preparation and subsequent 1,3-dipolar cycloaddition. These compounds can participate in 1,3-dipolar cycloadditions with both symmetric and nonsymmetric dipolarophiles to give the expected 1,3-cycloadducts in stereoselective manner. Selected examples are given in Scheme 82. [Pg.436]

Dipolar cycloadditions of the unusual dipolarophiles 9-arylidenefluorenes 446 with the dipoles generated from isatin 432a and cyclic amino acid proline 433a were carried out under four different conditions to yield a series of novel dispiro oxindole derivatives 50a-f via [3+2] cycloaddition (Scheme 100) <2002T8981>. [Pg.696]

The three-component reaction between isatin 432a, a-aminoacids 433 (proline and thioproline) and dipolarophiles in methanol/water medium was carried out by heating at 90 °C to afford the pyrrolidine-2-spiro-3 -(2-oxindoles) 51. The first step of the reaction is the formation of oxazlidinones 448. Loss of carbon dioxide from oxazolidinone proceeds via a stereospecific 1,3-cycloreversion to produce the formation of oxazolidinones almost exclusively with /razw-stereoselectivity. This /f-azomethine ylide undergo 1,3-dipolar cycloaddition with dipolarophiles to yield the pyrrohdinc-2-r/ V -3-(2-oxindolcs) 51. (Scheme 101) <2004EJ0413>. [Pg.697]

Azomethine ylides of pyrrolo[l,2- ]pyrazine <1996JOC4655> and 3,4-dihydro pyrrolo[l,2-tf]pyrazine <1997T9341> undergo 1,3-dipolar cycloadditions with a number of dipolarophiles. For example, the ylide 178 reacts with propargylic ester 179 to give the tricyclic derivative 180 (Equation 43). [Pg.733]

Pyranopyrroloimidazoles have been prepared stereospecifically by an intramolecular 1,3-dipolar cycloaddition reaction. Either enantiomer of the imidazoline derivative 176 (the -enantiomer is shown) may react with the bromoacetyl-containing acrylate dipolarophile 177, in the presence of l,8-diazabicyclo[5.4.0]undec-7-ene (DBU), to give the diastereomerically pure tricyclic product 178 in moderate yield (Equation 15). This reaction involves quaternization of the imidazole N, reaction of the quaternary salt with base to give the 1,3-dipole, which can then react, intramolecularly and stereospecifically, with the tethered dipolarophile <1997TL1647>. [Pg.804]


See other pages where 1.3- dipolar cycloaddition dipolarophile is mentioned: [Pg.247]    [Pg.58]    [Pg.647]    [Pg.109]    [Pg.145]    [Pg.213]    [Pg.233]    [Pg.248]    [Pg.249]    [Pg.360]    [Pg.428]    [Pg.227]    [Pg.259]    [Pg.2]    [Pg.4]    [Pg.150]    [Pg.360]    [Pg.428]    [Pg.298]    [Pg.303]    [Pg.378]    [Pg.13]    [Pg.145]    [Pg.194]    [Pg.775]   
See also in sourсe #XX -- [ Pg.47 ]




SEARCH



1,3-dipolar cycloaddition reactions electron-deficient dipolarophiles

1.3- dipolar cycloaddition reactions dipolarophile

Dipolarophile

Dipolarophiles cycloadditions

Dipolarophiles, in 1,3-dipolar cycloaddition

Dipolarophiles, in 1,3-dipolar cycloaddition reactions

© 2024 chempedia.info