Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dimethylformamide polymerization

The best solvent for this type of polymerization is dimethylformamide. The molecular weight is between 5300 and 5800, and the products have melting points up to 350°C. [Pg.397]

Dimethylformamide [68-12-2] (DME) and dimethyl sulfoxide [67-68-5] (DMSO) are the most commonly used commercial organic solvents, although polymerizations ia y-butyrolactoae, ethyleae carboaate, and dimethyl acetamide [127-19-5] (DMAC) are reported ia the hterature. Examples of suitable inorganic salts are aqueous solutioas of ziac chloride and aqueous sodium thiocyanate solutions. The homogeneous solution polymerization of acrylonitrile foUows the conventional kinetic scheme developed for vinyl monomers (12) (see Polymers). [Pg.277]

Catalysts. Silver and silver compounds are widely used in research and industry as catalysts for oxidation, reduction, and polymerization reactions. Silver nitrate has been reported as a catalyst for the preparation of propylene oxide (qv) from propylene (qv) (58), and silver acetate has been reported as being a suitable catalyst for the production of ethylene oxide (qv) from ethylene (qv) (59). The solubiUty of silver perchlorate in organic solvents makes it a possible catalyst for polymerization reactions, such as the production of butyl acrylate polymers in dimethylformamide (60) or the polymerization of methacrylamide (61). Similarly, the solubiUty of silver tetrafiuoroborate in organic solvents has enhanced its use in the synthesis of 3-pyrrolines by the cyclization of aHenic amines (62). [Pg.92]

Solubility. Poly(vinyl alcohol) is only soluble in highly polar solvents, such as water, dimethyl sulfoxide, acetamide, glycols, and dimethylformamide. The solubiUty in water is a function of degree of polymerization (DP) and hydrolysis (Fig. 4). Fully hydrolyzed poly(vinyl alcohol) is only completely soluble in hot to boiling water. However, once in solution, it remains soluble even at room temperature. Partially hydrolyzed grades are soluble at room temperature, although grades with a hydrolysis of 70—80% are only soluble at water temperatures of 10—40°C. Above 40°C, the solution first becomes cloudy (cloud point), followed by precipitation of poly(vinyl alcohol). [Pg.476]

Apart from TiO and the lower halides already mentioned, the chemistry of these metals in oxidation states lower than 3 is not well established. Addition compounds of the type [TiCl2L2] can be formed with difficulty with ligands such as dimethylformamide and acetonitrile, but their magnetic properties suggest that they also are polymeric with appreciable metal-metal bonding. However, the electronic spectra of Ti in TiCl2/AlCl3 melts and also of Ti incorporated in NaCl crystals (prepared by... [Pg.971]

Li et al. [87,88] found that aniline will process the photopolymerization of AN either in N,N-dimethylformamide (DMF) solution or in bulk with a fair rate of polymerization only next to DMT. From UV spectra it is proved that aniline will form a CTC with AN. Using 313-nm radiation that CTC is excited to an exciplex and polymerization proceeds. N-methylaniline will polymerize AN similarly. The following mechanism was proposed ... [Pg.238]

Samal et al. [25] reported that Ce(IV) ion coupled with an amide, such as thioacetamide, succinamide, acetamide, and formamide, could initiate acrylonitrile (AN) polymerization in aqueous solution. Feng et al. [3] for the first time thoroughly investigated the structural effect of amide on AAM polymerization using Ce(IV) ion, ceric ammonium nitrate (CAN) as an initiator. They found that only acetanilide (AA) and formanilide (FA) promote the polymerization and remarkably enhance Rp. The others such as formamide, N,N-dimethylformamide (DMF), N-butylacetamide, and N-cyclohexylacetamide only slightly affect the rate of polymerization. This can be shown by the relative rate (/ r), i.e., the rate of AAM polymerization initiated with ceric ion-amide divided by the rate of polymerization initiated with ceric ion alone. Rr for CAN-anilide system is approximately 2.5, and the others range from 1.04-1.11. [Pg.542]

The synthetic route represents a classical ladder polymer synthesis a suitably substituted, open-chain precursor polymer is cyclized to a band structure in a polymer-analogous fashion. The first step here, formation of the polymeric, open-chain precursor structure, is AA-type coupling of a 2,5-dibromo-1,4-dibenzoyl-benzene derivative, by a Yamamoto-type aryl-aryl coupling. The reagent employed for dehalogenation, the nickel(0)/l,5-cyclooctadiene complex (Ni(COD)2), was used in stoichiometric amounts with co-reagents (2,2 -bipyridine and 1,5-cyclooctadiene), in dimethylacetamide or dimethylformamide as solvent. [Pg.216]

Yin et al. [73,74] prepared new microgel star amphiphiles and stndied the compression behavior at the air-water interface. Particles were prepared in a two-step process. First, the gel core was synthesized by copolymerization of styrene and divinylbenzene in diox-ane using benzoylperoxide as initiator. Microgel particles 20 run in diameter were obtained. Second, the gel core was grafted with acrylic or methacryUc acid by free radical polymerization, resulting in amphiphilic polymer particles. These particles were spread from a dimethylformamide/chloroform (1 4) solution at the air-water interface. tt-A cnrves indicated low compressibility above lOmNm and collapse pressnres larger than 40 mNm With increase of the hydrophilic component, the molecnlar area of the polymer and the collapse pressure increased. [Pg.216]

SYil MisSIS The polymerization can be run in any one of several solvents, including dimethylsulfoxide, 1,4-dioxacyclohexane, dimethylformamide, and dimethylacetamide. Dimethylsulfoxide or mixtures based on dimethylsulfoxide have been used as the solvent for all reactions reported here. In other solvents, the product often precipitates as the reaction proceeds. This reaction can be successfully run with mole ratios of the reactants in the following ranges 1. hydroperoxide to calcium chloride 0.25 to 32> and 2. hydroperoxide to lignin (M ) 21 to 115 ... [Pg.196]

Dihydroxy-4 -vinylbenzophenone was converted to a homopolymer of inherent viscosity 0.57 djfc/g by polymerization with AIBN in dimethylformamide. The UV spectrum of the polymer showed the three absorption maxima characteristic of 2,4-dihydroxy b enz ophenones (at 324, 292 and 248 nm), although the extinction coefficient was depressed in comparison with the 4 -ethyl analogue. [Pg.47]

Twenty weakly acidic drugs, including niclosamide, were determined by a nonaqueous catalytic thermometric titration method. Catalysis of the anionic polymerization of acetonitrile was used for endpoint indication. The solvent used was a mixture of acetonitrile and dimethylformamide or pyridine, and the titrant was sodium methoxide, potassium hydroxide, tertiary butanol, or tertiary butanol-sodium nitrite. Recoveries, limits of detection and relative standard deviations were tabulated [31]. [Pg.83]

Dissolve SPDP in dimethylformamide (DMF) at a concentration of 6.2 mg/ml (makes a 20 mM stock solution). Add 50 pi of the SPDP solution to the 1 ml particle suspension and mix to dissolve. Note The small quantity of DMF in a polymeric particle suspension should not affect particle stability, even if the polymer type is susceptible to swelling in pure DMF. Other particle types, such as metallic or silica based, usually are not affected by organic solvent addition, unless their surfaces are non-covalently coated with a dissolvable polymer. [Pg.603]

Fig. 56. Dependence of Mwof the microgels on the polymer yield in the anionic polymerization of EDMA in toluene by n-BuLi [254] (see Figure 53 caption for the reaction conditions). Reduced viscosity vs concentration of microgels a) Composition (mol %) N,N -methyl-enebisacrylamide (55%), methacrylamide (33%), methacrylic acid (2%), methacrylamido acetaldehyd-dimethylacetal (10%),measured at 20 °C in water, b) Composition (mol %) 1,4-DVB (35%), propenic acid amide-2-methyl-N-(4-methyl-2-butyl-l,3-dioxolane prepared by emulsion copolymerization and measured in dimethylformamide. Fig. 56. Dependence of Mwof the microgels on the polymer yield in the anionic polymerization of EDMA in toluene by n-BuLi [254] (see Figure 53 caption for the reaction conditions). Reduced viscosity vs concentration of microgels a) Composition (mol %) N,N -methyl-enebisacrylamide (55%), methacrylamide (33%), methacrylic acid (2%), methacrylamido acetaldehyd-dimethylacetal (10%),measured at 20 °C in water, b) Composition (mol %) 1,4-DVB (35%), propenic acid amide-2-methyl-N-(4-methyl-2-butyl-l,3-dioxolane prepared by emulsion copolymerization and measured in dimethylformamide.
Polymerization temperature 115°C. c Measured in dimethylformamide at room temperature. [Pg.64]


See other pages where Dimethylformamide polymerization is mentioned: [Pg.261]    [Pg.333]    [Pg.336]    [Pg.337]    [Pg.338]    [Pg.338]    [Pg.338]    [Pg.223]    [Pg.1021]    [Pg.152]    [Pg.1021]    [Pg.230]    [Pg.392]    [Pg.163]    [Pg.166]    [Pg.313]    [Pg.191]    [Pg.252]    [Pg.767]    [Pg.54]    [Pg.312]    [Pg.187]    [Pg.133]    [Pg.134]    [Pg.135]    [Pg.253]    [Pg.31]    [Pg.10]    [Pg.190]    [Pg.292]    [Pg.71]    [Pg.289]    [Pg.421]    [Pg.717]    [Pg.75]    [Pg.579]   
See also in sourсe #XX -- [ Pg.2 , Pg.333 ]




SEARCH



Dimethylformamide

© 2024 chempedia.info