Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dimethylformamide acidity

The selection of solvents for quantitative work is not easy. Nitro-alkanes are sufficiently inert, but nitronium tetrafluoroborate is poorly soluble in them c. 0-3 %). Nitronium salts react rapidly with acetic anhydride, and less rapidly with acetic acid, A, A -dimethylformamide and acetonitrile, although the latter solvent can be used for nitration at low temperatures. Sulpholan was selected as the most suitable solvent ... [Pg.61]

In a lOOmL round-bottomed flask fitted with a magnetic stirrer is placed a mixture of palladium (II) chloride (89mg, O.Smmol), p-benzoquinone (5.94g, 55mmol) and 7 1 dimethylformamide/water (20mL). To the solution, t-decene [substitute safrole for this compound) (7.0g, 50mmc4) is added in 10 min and the mixture is stirred at room temperature for 7h. The solution is poured into cold 3 normal hydrochloric acid (lOOmL) and extracted with 5 portions of ether. The extracts are combined and washed with three portions of 10% aqueous sodium hydroxide solution and a portion of brine, and then dried After removal of the solvent, the residue is distilled to give 2-decanone [P2P] yield 6.1g (78%). [Pg.73]

Chromic(VI) acid Acetic acid, acetic anhydride, acetone, alcohols, alkali metals, ammonia, dimethylformamide, camphor, glycerol, hydrogen sulflde, phosphorus, pyridine, selenium, sulfur, turpentine, flammable liquids in general... [Pg.1207]

CeUulose triacetate is insoluble in acetone, and other solvent systems are used for dry extmsion, such as chlorinated hydrocarbons (eg, methylene chloride), methyl acetate, acetic acid, dimethylformamide, and dimethyl sulfoxide. Methylene chloride containing 5—15% methanol or ethanol is most often employed. Concerns with the oral toxicity of methylene chloride have led to the recent termination of the only triacetate fiber preparation faciHty in the United States, although manufacture stiH exists elsewhere in the world (49). [Pg.296]

Trifluoromethanesulfonic acid is miscible in all proportions with water and is soluble in many polar organic solvents such as dimethylformamide, dimethyl sulfoxide, and acetonitrile. In addition, it is soluble in alcohols, ketones, ethers, and esters, but these generally are not suitably inert solvents. The acid reacts with ethyl ether to give a colorless, Hquid oxonium complex, which on further heating gives the ethyl ester and ethylene. Reaction with ethanol gives the ester, but in addition dehydration and ether formation occurs. [Pg.315]

Hydrolysis of TEOS in various solvents is such that for a particular system increases directiy with the concentration of H" or H O" in acidic media and with the concentration of OH in basic media. The dominant factor in controlling the hydrolysis rate is pH (21). However, the nature of the acid plays an important role, so that a small addition of HCl induces a 1500-fold increase in whereas acetic acid has Httie effect. Hydrolysis is also temperature-dependent. The reaction rate increases 10-fold when the temperature is varied from 20 to 45°C. Nmr experiments show that varies in different solvents as foUows acetonitrile > methanol > dimethylformamide > dioxane > formamide, where the k in acetonitrile is about 20 times larger than the k in formamide. The nature of the alkoxy groups on the siHcon atom also influences the rate constant. The longer and the bulkier the alkoxide group, the lower the (3). [Pg.251]

Oxidation. Succinic acid reacts with hydrogen peroxide, giving different products that depend on the experimental conditions peroxysuccinic acid [2279-96-1] (CH2COOOH)2, oxosuccinic acid [328-42-7] (oxaloacetic acid) malonic acid [141-82-2] or a mixture of acetaldehyde, malonic acid, and make acid [6915-15-7]. Succinic anhydride in dimethylformamide (DMF) with H2O2 gives monoperoxysuccinic acid [3504-13-0], HOOCCH2CH2COOOH, mp 107°C (70). [Pg.535]

Liquid—hquid extraction can be used to obtain high purity linoleic acid from safflower fatty acids or linoleic acid from linseed fatty acids using furfural and hexane as solvents (18). High purity linoleic acid has been obtained from sunflower fatty acids using a dimethylformamide and hexane solvent system (19). [Pg.91]

Cellulose dissolved in suitable solvents, however, can be acetylated in a totally homogeneous manner, and several such methods have been suggested. Treatment in dimethyl sulfoxide (DMSO) with paraformaldehyde gives a soluble methylol derivative that reacts with glacial acetic acid, acetic anhydride, or acetyl chloride to form the acetate (63). The maximum degree of substitution obtained by this method is 2.0 some oxidation also occurs. Similarly, cellulose can be acetylated in solution with dimethylacetamide—paraformaldehyde and dimethylformamide-paraformaldehyde with a potassium acetate catalyst (64) to provide an almost quantitative yield of hydroxymethylceUulose acetate. [Pg.253]

Cyanuric acid is only slightly soluble (<0.1%) at room temperature ia common organic solvents such as acetone, benzene, diethyl ether, ethanol, and hexane (13). SolubiUty is significant ia basic nitrogen compounds (eg, dimethylformamide 7.2%) or unusual solvents such as DMSO (17.4%). SolubiUty ia... [Pg.417]

Sodium or potassium hydrogen sulfite reacts with several thiiranes to give disulfides of /3-mercaptosulfonic acid salts (76EGP122086). Potassium thiocyanate in dimethylformamide or aqueous ethanol isomerizes thiiranes (Scheme 84) (72CJC3930). 1,2-Dithiols are obtained by treatment of thiiranes with NaBH2S3 obtained from sodium borohydride and sulfur (73TL1401). [Pg.161]

Ethylenediaminetetraacetic acid (EDTA) [60-00-4] M 292.3, m 253 (dec), pK O.26 pK 0.96, pKj 2.60, pK 2.67, pK 6.16, pK 10.26. Dissolved in aqueous KOH or ammonium hydroxide, and ppted with dil HCl or HNO3, twice. Boiled twice with distd water to remove mineral acid, then recrystd from water or dimethylformamide. Dried at 110°. Also recrystd from boiling IN HCl, wash crystals with distd H2O and dried in vacuo. [Ma and Ray Biochemistry 19 751 1980.]... [Pg.237]

In a 200-ml, three-necked flask equipped with a mechanical stirrer, a thermometer, and a gas-inlet tube are placed 41.2 g. (0.2 mole) of 2,6-di- er/-butylphenol (Note 1) in 75 ml. of dimethylformamide (Note 2) and 2.5 g. (0.0075 mole) of salcomine (Note 3). With stirring, oxygen is introduced at such a rate that the temperature does not exceed 50°. This is continued for 4 hours. At the end of the reaction the temperature drops to about 25°. The reaction mixture is then poured onto 500 g. of crushed ice and 15 ml. of 4N hydrochloric acid. A yellow-brown precipitate is formed. The solid material is collected by suction filtration and washed on the filter three times with 50-ml. portions of IN hydrochloric... [Pg.78]

The resins are resistant to aqueous solutions of acids and alkalis and have a wide range of resistance to solvents. Amongst suitable solvents are methylene dichloride, dimethylformamide and phenol. The films bond well to poly-esterimide resins. [Pg.610]

Materials of these types have T s of some 290-300°C and some grades are claimed to be stable to about 400°C. Whilst resistant to hydrocarbons, halogenated hydrocarbons, ethers and acids the polymers are soluble in such materials as dimethylformamide, N-methylpyrrolidone and pyridine. Bases can cause stress cracking. These non-crystalline polymers are tough at temperatures as low as -46°C whilst at 260°C they have the strength shown by PTFE at room temperature. The polymers also exhibit excellent electrical insulation properties. [Pg.611]

Sorbic add, benzoic acid Apply sample solution in the form of a band, followed by 0.5% 4-bromophenacyl bromide in A, A -dimethylformamide. Heat to 80 °C for 45 min, dry and chromatograph. [78]... [Pg.71]

Spray solution Ilb Dissolve 1 g 7V-(l-naphthyl)ethylenediamine dihydrochloride in 50 ml dimethylformamide and 50 ml hydrochloric acid (< Hci = 4 mol/1) with warming. If the cooled solution is not clear it should be filtered. A pale violet coloration does not interfere with the reaction [4]. [Pg.223]

Snatzke has found that a solution prepared from chromium trioxide and dimethylformamide with a small amount of sulfuric acid has similar chemical properties as the Sarett reagent. It is useful with acid sensitive compounds and oxidation occurs at such a moderate rate that selective oxidations are often possible. Although the position allylic to a A -double bond is not attacked, the 3-hydroxy-A -system cannot be oxidized satisfactorily to the cor-... [Pg.231]

The bromination of 4,5-j -dihydrocortisone acetate in buffered acetic acid does not proceed very cleanly (<70%) and, in an attempt to improve this step in the cortisone synthesis, Holysz ° investigated the use of dimethylformamide (DMF) as a solvent for bromination. Improved yields were obtained (although in retrospect the homogeneity and structural assignments of some products seem questionable.) It was also observed that the combination of certain metal halides, particularly lithium chloride and bromide in hot DMF was specially effective in dehydrobromination of 4-bromodihydrocortisone acetate. Other amide solvents such as dimethylacetamide (DMA) and A-formylpiperidine can be used in place of DMF. It became apparent later that this method of dehydrobromination is also prone to produce isomeric unsaturated ketones. When applied to 2,4-dibromo-3-ketones, a substantial amount of the A -isomer is formed. [Pg.290]

The acid-catalyzed opening of 16,17-epoxy-20-ketones has also been studied in some detail. In this instance, jS elimination to give a, -unsaturated ketone cannot occur, and in the simplest examples 16 -substituted 17a-alcohols are formed. However, in the presence of a 16jS-methyl substituent, 16-methylene compounds are produced [(167), (168), for example]. Lithium bromide-lithium carbonate in refluxing dimethylformamide gives the A -17a-alcohol. ... [Pg.359]

However, 17a,21-acetonides (103), as well as acetals of other ketones or aldehydes, can be easily prepared by acid-catalyzed exchange reaction with dimethoxypropane or other alkyl acetals in dimethylformamide or benzene. Enol etherification of the A -S-ketone also occurs with the former procedure. [Pg.405]

Methoxypregna-3,5-dien-20-oned A solution of progesterone (0.3 g) dissolved in 5 ml of 2,2-dimethoxypropane-dimethylformamide (1 1) is treated with p-toluenesulfonic acid monohydrate (8 mg) and 0.1 ml of methanol and then heated under reflux for 3.5 hr. The cooled solution is neutralized with 45 mg of sodium bicarbonate, dissolved in 200 ml of ice water, stirred for 0.5 hr and filtered. The enol ether thus obtained (0.29 g, 92%) is purified by crystallization from acetone-methanol containing a trace of pyridine mp 135-160° [a]o —61° (CHCI3). [Pg.409]


See other pages where Dimethylformamide acidity is mentioned: [Pg.27]    [Pg.54]    [Pg.420]    [Pg.402]    [Pg.275]    [Pg.515]    [Pg.387]    [Pg.387]    [Pg.212]    [Pg.70]    [Pg.32]    [Pg.199]    [Pg.359]    [Pg.102]    [Pg.85]    [Pg.126]    [Pg.73]    [Pg.215]    [Pg.345]    [Pg.422]    [Pg.80]    [Pg.82]    [Pg.514]    [Pg.120]    [Pg.223]    [Pg.231]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.4 , Pg.5 , Pg.6 ]




SEARCH



Dimethylformamide

© 2024 chempedia.info