Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dimethyl malonate, oxidation

Volume 75 concludes with six procedures for the preparation of valuable building blocks. The first, 6,7-DIHYDROCYCLOPENTA-l,3-DIOXIN-5(4H)-ONE, serves as an effective /3-keto vinyl cation equivalent when subjected to reductive and alkylative 1,3-carbonyl transpositions. 3-CYCLOPENTENE-l-CARBOXYLIC ACID, the second procedure in this series, is prepared via the reaction of dimethyl malonate and cis-l,4-dichloro-2-butene, followed by hydrolysis and decarboxylation. The use of tetrahaloarenes as diaryne equivalents for the potential construction of molecular belts, collars, and strips is demonstrated with the preparation of anti- and syn-l,4,5,8-TETRAHYDROANTHRACENE 1,4 5,8-DIEPOXIDES. Also of potential interest to the organic materials community is 8,8-DICYANOHEPTAFULVENE, prepared by the condensation of cycloheptatrienylium tetrafluoroborate with bromomalononitrile. The preparation of 2-PHENYL-l-PYRROLINE, an important heterocycle for the synthesis of a variety of alkaloids and pyrroloisoquinoline antidepressants, illustrates the utility of the inexpensive N-vinylpyrrolidin-2-one as an effective 3-aminopropyl carbanion equivalent. The final preparation in Volume 75, cis-4a(S), 8a(R)-PERHYDRO-6(2H)-ISOQUINOLINONES, il lustrates the conversion of quinine via oxidative degradation to meroquinene esters that are subsequently cyclized to N-acylated cis-perhydroisoquinolones and as such represent attractive building blocks now readily available in the pool of chiral substrates. [Pg.140]

Ceric ammonium nitrate promoted oxidative addition of silyl enol ethers to 1,3-butadiene affords 1 1 mixtures of 4-(/J-oxoalkyl)-substituted 3-nitroxy-l-butene and l-nitroxy-2-butene27. Palladium(0)-catalyzed alkylation of the nitroxy isomeric mixture takes place through a common ij3 palladium complex which undergoes nucleophilic attack almost exclusively at the less substituted allylic carbon. Thus, oxidative addition of the silyl enol ether of 1-indanone to 1,3-butadiene followed by palladium-catalyzed substitution with sodium dimethyl malonate afforded 42% of a 19 1 mixture of methyl ( )-2-(methoxycarbonyl)-6-(l-oxo-2-indanyl)-4-hexenoate (5) and methyl 2-(methoxycarbonyl)-4-(l-oxo-2-indanyl)-3-vinylbutanoate (6), respectively (equation 12). [Pg.698]

Electrochemical oxidations of anions lead to radicals that may add to the carbon-carbon double bonds. In this way, the oxidation of anions of dimethyl malonate or methyl acetylacetate in the presence of olefines gives di- or tetrahy-drofurans derivatives in moderate yields (Scheme 43) [60]. [Pg.355]

Finally, Nikishin and coworkers have reported that the mediated oxidations of doubly activated methylene compounds can be used to synthesize cyclopropane derivatives (Scheme 17) [30]. Reactions using dimethyl malonate, ethyl cyanoacetate, and malononitrile were studied. Metal halides were used as mediators. When the activated methylene compound was oxidized in the absence of a carbonyl compound, three of the substrate molecules were coupled together to form the hexasubstituted product. Interestingly, when the ethyl cyanoacetate substrate was used the product was formed in a stereoselective fashion (18b). In an analogous reaction, oxidation of the activated methylene compounds in the presence of ketones and aldehydes led to the formation of cyclopropane products that had incorporated the ketone or aldehyde (20). In the case of 19a, the reactions typically led to a mixture of stereoisomers. [Pg.62]

Electrochemical oxidation of aliphatic tertiary amines in acetonitrile together with compounds having weakly acidic hydrogens, such as dimethyl malonate, leads to addition of the malonate anion to the immonium cation intermediate. 2,4,6-Collidine is added to combine with protons, which are released during reaction [90],... [Pg.279]

Reductive cyclization of o-nitrophenylacetic acids is a very general method of oxindole synthesis (see Section 3.06.2.1.1 for the application of this method to indoles in general). The main problem is efficient construction of the desired phenylacetic acid. One method involves base-catalyzed condensation of substituted nitrotoluenes with diethyl oxalate followed by oxidation of the 3-arylpyruvate (equation 200) (63CB253). Nucleophilic substitution of o-nitrophenyl trifluoromethanesulfonate esters, which are readily prepared from phenols, by dimethyl malonate provides another route (equation 201) (79TL2857). [Pg.365]

However, the reaction of tri-a-butylarsine oxide with dibenzoyl-methane or with dimethyl malonate in triethylamine and in the presence of phosphorus pentoxide gave the corresponding ylides (11), respectively, (20, 40). [Pg.119]

The chromium oxapropadienylidene complex affords dimethyl malonate when oxidized in methanol (77), and the diester is assumed to be produced by addition of the alcohol to the first-formed tricarbon dioxide ... [Pg.114]

Methyl vinyl ketone (entry 3) and the tert-butyl cation (entry 4) are also reactive toward complex 3. The naphthalenium complexes resulting from the addition of these electrophiles will add the conjugate base of dimethyl malonate (generated in situ from a combination of dimethyl malonate (DMM) and diisopropylethylamine (DIEA)) to complete the tandem additions. Oxidation of the resulting complexes yields cis-l,4-dihydronaphthalenes. The entire sequence of complexation, tandem addition, and demetalation employed for all entries in Table 4 can be performed using bench-top conditions (i.e., a non-inert atmosphere). [Pg.303]

The cyclohexadiene complex 29 has been further elaborated to afford either the cydo-hexenone 34 or the cyclohexene 36 in moderate yields (Scheme 1) [21]. The addition of HOTf to 29 generates the oxonium species 33, which can be hydrolyzed and treated with cerium(IV) ammonium nitrate (CAN) to release the cyclohexanone 34 in 43 % yield from 29. Alternatively, hydride reduction of 33 followed by treatment with acid eliminates methanol to generate the r 3-allyl complex 35. This species can be trapped by the conjugate base of dimethyl malonate to afford a cyclohexene complex. Oxidative decomplexation of this species using silver trifluoromethanesulfonate liberates the cyclohexene 36 in 57 % overall yield (based on 29). [Pg.306]

The effect of hydrogen bonding on allylic alkylation was studied in the base-free reaction of phenylallyl carbonate with dimethyl malonate.1 31,1321 While the reaction proceeds rapidly in THF in the presence of four equivalents of PPh3, it is very sluggish in [C4Ciim][BF4], The reaction in THF was significantly inhibited when small quantities of the ionic liquid were added. Only with excess external base did the reaction proceed in a comparable rate in the ionic liquid. It was shown that the oxidative addition of allylic acetate to Pd(0) is reversible and in THF the resulting acetate anion... [Pg.148]

In a Mn(OAc)3-mediated oxidative radical reaction of allenes with dimethyl malonate or ethyl cyanoacetate, an efficient synthesis of A -butenolides is realized (Equation 59) <2007S45>. [Pg.523]

Similarly small rate factors were obtained for 1,3-dipolar cycloadditions between diphenyl diazomethane and dimethyl fumarate [131], 2,4,6-trimethylbenzenecarbonitrile oxide and tetracyanoethene or acrylonitrile [811], phenyl azide and enamines [133], diazomethane and aromatic anils [134], azomethine imines and dimethyl acetylenedi-carboxylate [134a], diazo dimethyl malonate and diethylaminopropyne [544] or N-(l-cyclohexenyl)pyrrolidine [545], and A-methyl-C-phenylnitrone and thioketones [812]. Huisgen has written comprehensive reviews on solvent polarity and rates of 1,3-dipolar cycloaddition reactions [541, 542]. The observed small solvent effects can be easily explained by the fact that the concerted, but non-synchronous, bond formation in the activated complex may lead to the destruction or creation of partial charges, connected... [Pg.191]

The diols (97) from asymmetric dil droxylation are easily converted to cyclic sii e esters (98) and thence to cyclic sulfate esters (99).This two-step process, reaction of the diol (97) with thionyl chloride followed by ruthenium tetroxide catalyzed oxidation, can be done in one pot if desired and transforms the relatively unreactive diol into an epoxide mimic, ue. the 1,2-cyclic sulfate (99), which is an excellent electrophile. A survey of reactions shows that cyclic sulfates can be opened by hydride, azide, fluoride, thiocyanide, carboxylate and nitrate ions. Benzylmagnesium chloride and thie anion of dimethyl malonate can also be used to open the cyclic sulfates. Opening by a nucleophile leads to formation of an intermediate 3-sidfate aiuon (100) which is easily hydrolyzed to a -hydroxy compound (101). Conditions for cat ytic acid hydrolysis have been developed that allow for selective removal of the sulfate ester in the presence of other acid sensitive groups such as acetals, ketals and silyl ethers. [Pg.431]

Substitution reactions of allylic substrates with nucleophiles have been shown to be catalyzed by certain palladium complexes [2, 42], The catalytic cycle of the reactions involves Jt-allylpalladium as a key intermediate (Scheme 2-22). Oxidative addition of the allylic substrate to a palladium(o) species forms a rr-allylpal-ladium(n) complex, which undergoes attack of a nucleophile on the rr-allyl moiety to give an allylic substitution product. The substitution reactions proceed in an Sn or Sn- manner depending on catalysts, nucleophiles, and substituents on the substrates. Studies on the stereochemistry of the allylic substitution have revealed that soft carbon nucleophiles represented by sodium dimethyl malonate attack the TT-allyl carbon directly from the side opposite to the palladium (Scheme 2-23). [Pg.119]

As a mechanistically interesting example the reaction of an unsaturated dimethyl malonate derivative with Mn(OAc)3 resulted in the formation of substituted cyclopentanes. The primary radical can either be trapped by CO or cyclize to an unstable radical intermediate, which in turn reacts with CO. Because the trapping of the first-generated radical is reversible, the cyclized acyl intermediate gives the desired product after oxidation [52]. [Pg.191]

Cyclic vinyl epoxides are versatile building blocks (Table 11) which have been used in palladium-assisted routes to carbocyclic nucleosides. A formal synthesis of ( )-aris-teromycin101, the carbocyclic analog of adenosine, has been accomplished employing ni-tromethane as the nucleophile which serves as an acyl anion equivalent (Table 11. entry 2). The aldehyde is released by subsequent basic potassium permanganate oxidation. If nitromethane is used diluted in tetrahydrofuran, then a mixture of mono- and bis-alkylated product is formed. Whereas the alkylation of cyclohexenoxide with dimethyl malonate proceeds in a 1,4-crs fashion under palladium(O) catalysis, the 1.2-/ra/i.v-product is formed under basic conditions in the absence of the palladium(O) catalyst. [Pg.204]


See other pages where Dimethyl malonate, oxidation is mentioned: [Pg.312]    [Pg.312]    [Pg.155]    [Pg.940]    [Pg.279]    [Pg.27]    [Pg.155]    [Pg.155]    [Pg.159]    [Pg.39]    [Pg.103]    [Pg.120]    [Pg.200]    [Pg.171]    [Pg.721]    [Pg.587]    [Pg.155]    [Pg.940]    [Pg.698]    [Pg.361]    [Pg.174]    [Pg.226]    [Pg.185]    [Pg.205]    [Pg.38]    [Pg.191]    [Pg.51]   
See also in sourсe #XX -- [ Pg.179 ]




SEARCH



6,6-Dimethyl 1-oxid

Dimethyl 2 malonates

Malonic dimethyl

© 2024 chempedia.info