Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dimensionless groups Reynolds numbers

N, IVc, IVnu IVp. K, IVh. IVs. N Proportionality coefficient, dimensionless group Grashof number, L p P Af/)U Nusselt number, hD/k or hL/k Peclet number, DGc/k Prandtl number, c A/k Reynolds number, DG/ l Stanton number, Number of sealing strips Dimensionless Dimensionless... [Pg.376]

Flow Past Deformable Bodies. The flow of fluids past deformable surfaces is often important, eg, contact of Hquids with gas bubbles or with drops of another Hquid. Proper description of the flow must allow for both the deformation of these bodies from their shapes in the absence of flow and for the internal circulations that may be set up within the drops or bubbles in response to the external flow. DeformabiUty is related to the interfacial tension and density difference between the phases internal circulation is related to the drop viscosity. A proper description of the flow involves not only the Reynolds number, dFp/p., but also other dimensionless groups, eg, the viscosity ratio, 1 /p En tvos number (En ), Api5 /o and the Morton number (Mo),giJ.iAp/plG (6). [Pg.92]

Reynolds Number. The Reynolds number, Ke, is named after Osborne Reynolds, who studied the flow of fluids, and in particular the transition from laminar to turbulent flow conditions. This transition was found to depend on flow velocity, viscosity, density, tube diameter, and tube length. Using a nondimensional group, defined as p NDJp, the transition from laminar to turbulent flow for any internal flow takes place at a value of approximately 2100. Hence, the dimensionless Reynolds number is commonly used to describe whether a flow is laminar or turbulent. Thus... [Pg.483]

Based on such analyses, the Reynolds and Weber numbers are considered the most important dimensionless groups describing the spray characteristics. The Reynolds number. Re, represents the ratio of inertial forces to viscous drag forces. [Pg.332]

American engineers are probably more familiar with the magnitude of physical entities in U.S. customary units than in SI units. Consequently, errors made in the conversion from one set of units to the other may go undetected. The following six examples will show how to convert the elements in six dimensionless groups. Proper conversions will result in the same numerical value for the dimensionless number. The dimensionless numbers used as examples are the Reynolds, Prandtl, Nusselt, Grashof, Schmidt, and Archimedes numbers. [Pg.43]

The dimensionless group hD/k is called the Nusselt number, Nn , and the group Cp i./k is the Prandtl number, Np. . The group DVp/ i is the familiar Reynolds number, encountered in fluid-friction problems. These three... [Pg.507]

The dimensionless relations are usually indicated in either of two forms, each yielding identical resiilts. The preferred form is that suggested by Colburn ran.s. Am. In.st. Chem. Eng., 29, 174—210 (1933)]. It relates, primarily, three dimensionless groups the Stanton number h/cQ, the Prandtl number c Jk, and the Reynolds number DG/[L. For more accurate correlation of data (at Reynolds number <10,000), two additional dimensionless groups are used ratio of length to diameter L/D and ratio of viscosity at wall (or surface) temperature to viscosity at bulk temperature. Colburn showed that the product of the Stanton number and the two-thirds power of the Prandtl number (and, in addition, power functions of L/D and for Reynolds number <10,000) is approximately equal to half of the Fanning friction fac tor//2. This produc t is called the Colburn j factor. Since the Colburn type of equation relates heat transfer and fluid friction, it has greater utility than other expressions for the heat-transfer coefficient. [Pg.559]

Dukler Theory The preceding expressions for condensation are based on the classical Nusselt theoiy. It is generally known and conceded that the film coefficients for steam and organic vapors calculated by the Nusselt theory are conservatively low. Dukler [Chem. Eng. Prog., 55, 62 (1959)] developed equations for velocity and temperature distribution in thin films on vertical walls based on expressions of Deissler (NACA Tech. Notes 2129, 1950 2138, 1952 3145, 1959) for the eddy viscosity and thermal conductivity near the solid boundaiy. According to the Dukler theoiy, three fixed factors must be known to estabhsh the value of the average film coefficient the terminal Reynolds number, the Prandtl number of the condensed phase, and a dimensionless group defined as follows ... [Pg.566]

Friction Factor and Reynolds Number For a Newtonian fluid in a smooth pipe, dimensional analysis relates the frictional pressure drop per unit length AP/L to the pipe diameter D, density p, and average velocity V through two dimensionless groups, the Fanning friction factor/and the Reynolds number Re. [Pg.635]

Not only is the type of flow related to the impeller Reynolds number, but also such process performance characteristics as mixing time, impeller pumping rate, impeller power consumption, and heat- and mass-transfer coefficients can be correlated with this dimensionless group. [Pg.1629]

Heat Transfer In general, the fluid mechanics of the film on the mixer side of the heat transfer surface is a function of what happens at that surface rather than the fluid mechanics going on around the impeller zone. The impeller largely provides flow across and adjacent to the heat-transfer surface and that is the major consideration of the heat-transfer result obtained. Many of the correlations are in terms of traditional dimensionless groups in heat transfer, while the impeller performance is often expressed as the impeller Reynolds number. [Pg.1641]

Dimensional analysis leads to various dimensionless parameters, wliieli are based on the dimension s mass (M), length (L), and time T). Based on these elements, one ean obtain various independent parameters sueh as density (p), viseosity (/i), speed (A ), diameter ( )), and veloeity (V). The independent parameters lead to forming various dimensionless groups, whieh are used in fluid meehanies of turbomaehines. Reynolds number is the ratio of the inertia forees to the viseous forees... [Pg.126]

Equation 46 is a general expression that may be applied to the treatment of experimental data to evaluate exponent a. This, however, is a cumbersome approach that can be avoided by rewriting the equation in dimensionless form. Equation 42 shows that there are n = 5 dimensional values, and the number of values with independent measures is m = 3 (m, kg, sec.). Hence, the number of dimensionless groups according to the ir-theorem is tc = 5 - 3 = 2. As the particle moves through the fluid, one of the dimensionless complexes is obviously the Reynolds number Re = w Upl/i. Thus, we may write ... [Pg.293]

And introducing the ratio of accelerations, = ag/g, where indicates the relative strength of acceleration, ag, with respect to the gravitational acceleration g. This is known as the separation number. The LHS of equation 60 contains a Reynolds number group raised to the second power and the drag coefficient. Hence, the equation may be written entirely in terms of dimensionless numbers ... [Pg.295]

Coefficient A and exponent a can be evaluated readily from data on Re and T. The dimensionless groups are presented on a single plot in Figure 15. The plot of the function = f (Re) is constructed from three separate sections. These sections of the curve correspond to the three regimes of flow. The laminar regime is expressed by a section of straight line having a slope P = 135 with respect to the x-axis. This section corresponds to the critical Reynolds number, Re < 0.2. This means that the exponent a in equation 53 is equal to 1. At this a value, the continuous-phase density term, p, in equation 46 vanishes. [Pg.297]

The inverse of the Bodenstein number is eD i/u dp, sometimes referred to as the intensity of dispersion. Himmelblau and Bischoff [5], Levenspiel [3], and Wen and Fan [6] have derived correlations of the Peclet number versus Reynolds number. Wen and Fan [6] have summarized the correlations for straight pipes, fixed and fluidized beds, and bubble towers. The correlations involve the following dimensionless groups ... [Pg.732]

The first dimensionless group on the right is the Reynolds number, the second represents the ratio of the gas velocity to the impeller tip speed, the third is the Weber number, and the fourth is the Froude number. [Pg.326]

Equations (3.11) and (3.12) show that the friction factor of a rectangular micro-channel is determined by two dimensionless groups (1) the Reynolds number that is defined by channel depth, and (2) the channel aspect ratio. It is essential that the introduction of a hydraulic diameter as the characteristic length scale does not allow for the reduction of the number of dimensionless groups to one. We obtain... [Pg.124]

Convective heat transfer to fluid inside circular tubes depends on three dimensionless groups the Reynolds number. Re = pdtu/ii, the Prandtl number, Pr = Cpiilk where k is the thermal conductivity, and the length-to-diameter ratio, L/D. These groups can be combined into the Graetz number, Gz = RePr4/L. The most commonly used correlations for the inside heat transfer coefficient are... [Pg.179]

The secondary flows from natural convection can become larger than the primary flow, so it seems likely that the secondary flows might become turbulent or nonsteady. Shown in Tables 1 and 2 are the dimensionless groups at the inlet and outlet, based on cup-average quantities, as well as the Reynolds numbers for the primary and secondary flows (Reynolds numbers defined in terms of the respective total mass flowrate, the viscosity and the ratio of tube perimeter to tube area). [Pg.352]

Several dimensionless groups characterize these equations. The Reynolds number Re = f O/Poo indicates the ratio of centrifugal forces to viscous forces. The ratio of the Grashof number and the Reynolds number to the 3/2 power,... [Pg.338]

Annular flow. In annular flow, as mentioned in Section 3.4.6.1, modeling of the interfacial shear remains empirical. For adiabatic two-phase flow, Asali et al. (1985) suggested that the friction factor, fjfs, is dependent on a dimensionless group for the film thickness, 8+, as defined in Eq. (3-136), and the gas Reynolds number, Rec ... [Pg.231]

For gas-liquid flows in Regime I, the Lockhart and Martinelli analysis described in Section I,B can be used to calculate the pressure drop, phase holdups, hydraulic diameters, and phase Reynolds numbers. Once these quantities are known, the liquid phase may be treated as a single-phase fluid flowing in an open channel, and the liquid-phase wall heat-transfer coefficient and Peclet number may be calculated in the same manner as in Section lI,B,l,a. The gas-phase Reynolds number is always larger than the liquid-phase Reynolds number, and it is probable that the gas phase is well mixed at any axial position therefore, Pei is assumed to be infinite. The dimensionless group M is easily evaluated from the operating conditions and physical properties. [Pg.33]

A dimensionless group called the Reynolds number is defined for flow in a pipe or tube... [Pg.12]


See other pages where Dimensionless groups Reynolds numbers is mentioned: [Pg.190]    [Pg.192]    [Pg.190]    [Pg.192]    [Pg.106]    [Pg.106]    [Pg.107]    [Pg.508]    [Pg.1044]    [Pg.10]    [Pg.296]    [Pg.733]    [Pg.30]    [Pg.29]    [Pg.29]    [Pg.64]    [Pg.65]    [Pg.120]    [Pg.283]    [Pg.187]    [Pg.320]    [Pg.30]    [Pg.137]    [Pg.34]    [Pg.347]    [Pg.493]    [Pg.89]    [Pg.44]   
See also in sourсe #XX -- [ Pg.12 , Pg.64 ]




SEARCH



Dimensionless

Dimensionless numbers Reynolds

Dimensionless numbers Reynolds number

Group number

Group numbering

Reynold

Reynolds number

© 2024 chempedia.info