The differential material balances contain a large number of physical parameters describing the structure of the porous medium, the physical properties of the gaseous mixture diffusing through it, the kinetics of the chemical reaction and the composition and pressure of the reactant mixture outside the pellet. In such circumstances it Is always valuable to assemble the physical parameters into a smaller number of Independent dimensionless groups, and this Is best done by writing the balance equations themselves in dimensionless form. The relevant equations are (11.20), (11.21), (11.22), (11.23), (11.16) and the expression (11.27) for the effectiveness factor. [Pg.122]

BqP /u I Is a dimensionless group. The same suhstitutions may also be made... [Pg.123]

In section 11.4 Che steady state material balance equations were cast in dimensionless form, therary itancifying a set of independent dimensionless groups which determine ice steady state behavior of the pellet. The same procedure can be applied to the dynamical equations and we will illustrate it by considering the case t f the reaction A - nB at the limit of bulk diffusion control and high permeability, as described by equations (12.29)-(12.31). [Pg.168]

Flow Past Deformable Bodies. The flow of fluids past deformable surfaces is often important, eg, contact of Hquids with gas bubbles or with drops of another Hquid. Proper description of the flow must allow for both the deformation of these bodies from their shapes in the absence of flow and for the internal circulations that may be set up within the drops or bubbles in response to the external flow. DeformabiUty is related to the interfacial tension and density difference between the phases internal circulation is related to the drop viscosity. A proper description of the flow involves not only the Reynolds number, dFp/p., but also other dimensionless groups, eg, the viscosity ratio, 1 /p En tvos number (En ), Api5 /o and the Morton number (Mo),giJ.iAp/plG (6). [Pg.92]

Where surface-active agents are present, the notion of surface tension and the description of the phenomena become more complex. As fluid flows past a circulating drop (bubble), fresh surface is created continuously at the nose of the drop. This fresh surface can have a different concentration of agent, hence a different surface tension, from the surface further downstream that was created earlier. Neither of these values need equal the surface tension developed in a static, equiUbrium situation. A proper description of the flow under these circumstances involves additional dimensionless groups related to the concentrations and diffusivities of the surface-active agents. [Pg.92]

Three basic approaches have been used to solve the equations of motion. For relatively simple configurations, direct solution is possible. For complex configurations, numerical methods can be employed. For many practical situations, particularly three-dimensional or one-of-a-kind configurations, scale modeling is employed and the results are interpreted in terms of dimensionless groups. This section outlines the procedures employed and the limitations of these approaches (see Computer-aided engineering (CAE)). [Pg.100]

Simila.rityAna.Iysis, Similarity analysis starts from the equation describing a system and proceeds by expressing all of the dimensional variables and boundary conditions in the equation in reduced or normalized form. Velocities, for example, are expressed in terms of some reference velocity in the system, eg, the average velocity. When the equation is rewritten in this manner certain dimensionless groupings of the reference variables appear as coefficients, and the dimensional variables are replaced by their normalized relatives. If another physical system can be described by the same equation with the same numerical values of the coefficients, then the solutions to the two equations (normalized variables) are identical and either system is an accurate model of the other. [Pg.106]

Dimensionless numbers are not the exclusive property of fluid mechanics but arise out of any situation describable by a mathematical equation. Some of the other important dimensionless groups used in engineering are Hsted in Table 2. [Pg.106]

Dimensional Analysis. Dimensional analysis can be helpful in analyzing reactor performance and developing scale-up criteria. Seven dimensionless groups used in generalized rate equations for continuous flow reaction systems are Hsted in Table 4. Other dimensionless groups apply in specific situations (58—61). Compromising assumptions are often necessary, and their vaHdation must be estabHshed experimentally or by analogy to previously studied systems. [Pg.517]

Table 4. Dimensionless Groups in Chemical Reaction Systems... |

Table 5. Representative Dimensionless Groups for Agitated Reactors... |

American engineers are probably more familiar with the magnitude of physical entities in U.S. customary units than in SI units. Consequently, errors made in the conversion from one set of units to the other may go undetected. The following six examples will show how to convert the elements in six dimensionless groups. Proper conversions will result in the same numerical value for the dimensionless number. The dimensionless numbers used as examples are the Reynolds, Prandtl, Nusselt, Grashof, Schmidt, and Archimedes numbers. [Pg.43]

Let m be the rank of the Ot matrix. Then p = n — m is the number of dimensionless groups that can be formed. One can choose m variables [Pj] to be the basis and express the other p variables in terms of them, givingp dimensionless quantities. [Pg.507]

Example Buckingham Pi Method—Heat-Transfer Film Coefficient It is desired to determine a complete set of dimensionless groups with which to correlate experimental data on the film coefficient of heat transfer between the walls of a straight conduit with circular cross section and a fluid flowing in that conduit. The variables and the dimensional constant believed to be involved and their dimensions in the engineering system are given below ... [Pg.507]

The dimensionless group hD/k is called the Nusselt number, Nn , and the group Cp i./k is the Prandtl number, Np. . The group DVp/ i is the familiar Reynolds number, encountered in fluid-friction problems. These three... [Pg.507]

It has been found that these dimensionless groups may be correlated well by an equation of the type... [Pg.507]

TABLE 3-8 Dimensionless Groups in the Engineering System of Dimensions... [Pg.508]

Ns Proportionahty coefficient, dimensionless group Dimensionless Dimensionless... [Pg.550]

The dimensionless relations are usually indicated in either of two forms, each yielding identical resiilts. The preferred form is that suggested by Colburn ran.s. Am. In.st. Chem. Eng., 29, 174—210 (1933)]. It relates, primarily, three dimensionless groups the Stanton number h/cQ, the Prandtl number c Jk, and the Reynolds number DG/[L. For more accurate correlation of data (at Reynolds number <10,000), two additional dimensionless groups are used ratio of length to diameter L/D and ratio of viscosity at wall (or surface) temperature to viscosity at bulk temperature. Colburn showed that the product of the Stanton number and the two-thirds power of the Prandtl number (and, in addition, power functions of L/D and for Reynolds number <10,000) is approximately equal to half of the Fanning friction fac tor//2. This produc t is called the Colburn j factor. Since the Colburn type of equation relates heat transfer and fluid friction, it has greater utility than other expressions for the heat-transfer coefficient. [Pg.559]

Dukler Theory The preceding expressions for condensation are based on the classical Nusselt theoiy. It is generally known and conceded that the film coefficients for steam and organic vapors calculated by the Nusselt theory are conservatively low. Dukler [Chem. Eng. Prog., 55, 62 (1959)] developed equations for velocity and temperature distribution in thin films on vertical walls based on expressions of Deissler (NACA Tech. Notes 2129, 1950 2138, 1952 3145, 1959) for the eddy viscosity and thermal conductivity near the solid boundaiy. According to the Dukler theoiy, three fixed factors must be known to estabhsh the value of the average film coefficient the terminal Reynolds number, the Prandtl number of the condensed phase, and a dimensionless group defined as follows ... [Pg.566]

Friction Factor and Reynolds Number For a Newtonian fluid in a smooth pipe, dimensional analysis relates the frictional pressure drop per unit length AP/L to the pipe diameter D, density p, and average velocity V through two dimensionless groups, the Fanning friction factor/and the Reynolds number Re. [Pg.635]

For purposes of data correlation, model studies, and scale-up, it is useful to arrange variables into dimensionless groups. Table 6-7 lists many of the dimensionless groups commonly founa in fluid mechanics problems, along with their physical interpretations and areas of application. More extensive tabulations may oe found in Catchpole and Fulford (Ind. Eng. Chem., 58[3], 46-60 [1966]) and Fulford and Catchpole (Ind. Eng. Chem., 60[3], 71-78 [1968]). [Pg.674]

TABLE 6-7 Dimensionless Groups and Their Significance Concluded]... [Pg.676]

Sohd Catalysts Processes with solid catalysts are affected by diffusion of heat and mass (1) within the pores of the pellet, (2) between the fluid and the particle, and (3) axially and radially within the packed bed. Criteria in terms of various dimensionless groups have been developed to tell when these effects are appreciable. They are discussed by Mears (Ind. Eng. Chem. Proc. Des. Devel., 10, 541-547 [1971] Jnd. Eng. Chem. Fund., 15, 20-23 [1976]) and Satterfield (Heterogeneous Cataly.sls in Practice, McGraw-Hill, 1991, p. 491). [Pg.708]

See also in sourсe #XX -- [ Pg.4 , Pg.55 , Pg.57 , Pg.122 , Pg.128 , Pg.355 ]

See also in sourсe #XX -- [ Pg.123 ]

See also in sourсe #XX -- [ Pg.6 , Pg.7 , Pg.8 , Pg.9 , Pg.10 , Pg.11 , Pg.12 , Pg.13 , Pg.14 , Pg.15 , Pg.16 , Pg.17 ]

See also in sourсe #XX -- [ Pg.64 , Pg.75 , Pg.102 , Pg.110 ]

See also in sourсe #XX -- [ Pg.163 , Pg.164 , Pg.167 , Pg.176 , Pg.177 ]

© 2019 chempedia.info