Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion numerical solution

The finite element results obtained for various values of (3 are compared with the analytical solution in Figure 2.27. As can be seen using a value of /3 = 0.5 a stable numerical solution is obtained. However, this solution is over-damped and inaccurate. Therefore the main problem is to find a value of upwinding parameter that eliminates oscillations without generating over-damped results. To illustrate this concept let us consider the following convection-diffusion equation... [Pg.61]

Morton, K. W., 1996. Numerical Solution of Convection Diffusion Problems, Chapman Hall, London. [Pg.109]

For noncoustaut diffusivity, a numerical solution of the conseiwa-tion equations is generally required. In molecular sieve zeohtes, when equilibrium is described by the Langmuir isotherm, the concentration dependence of the intracrystalline diffusivity can often be approximated by Eq. (16-72). The relevant rate equation is ... [Pg.1518]

A numerical solution of this equation for a constant surface concentration (infinite fluid volume) is given by Garg and Ruthven [Chem. Eng. ScL, 27, 417 (1972)]. The solution depends on the value of A. = n i — n )/ n — n ). Because of the effect of adsorbate concentration on the effective diffusivity, for large concentration steps adsorption is faster than desorption, while for small concentration steps, when D, can be taken to he essentially constant, adsorption and desorption curves are mirror images of each other as predicted by Eq. (16-96) see Ruthven, gen. refs., p. 175. [Pg.1519]

In binary ion-exchange, intraparticle mass transfer is described by Eq. (16-75) and is dependent on the ionic self diffusivities of the exchanging counterions. A numerical solution of the corresponding conseiwation equation for spherical particles with an infinite fluid volume is given by Helfferich and Plesset [J. Chem. Phy.s., 66, 28, 418... [Pg.1519]

For a linear isotherm tij = KjCj), this equation is identical to the con-seiwation equation for sohd diffusion, except that the solid diffusivity D,i is replaced by the equivalent diffusivity = pDj,i/ p + Ppi< ). Thus, Eqs. (16-96) and (16-99) can be used for pore diffusion control with infinite and finite fluid volumes simply by replacing D,j with D. When the adsorption isotherm is nonhnear, a numerical solution is... [Pg.1520]

Lenhoff, J. Chromatogr., 384, 285 (1987)] or by direct numerical solution of the conservation and rate equations. For the special case of no-axial dispersion with external mass transfer and pore diffusion, an explicit time-domain solution, useful for the case of time-periodic injections, is also available [Carta, Chem. Eng. Sci, 43, 2877 (1988)]. In most cases, however, when N > 50, use of Eq. (16-161), or (16-172) and (16-174) with N 2Np calculated from Eq. (16-181) provides an approximation sufficiently accurate for most practical purposes. [Pg.1535]

Many theoretical embellishments have been made to the basic model of pore diffusion as presented here. Effectiveness factors have been derived for reaction orders other than first and for Hougen and Watson kinetics. These require a numerical solution of Equation (10.3). Shape and tortuosity factors have been introduced to treat pores that have geometries other than the idealized cylinders considered here. The Knudsen diffusivity or a combination of Knudsen and bulk diffusivities has been used for very small pores. While these studies have theoretical importance and may help explain some observations, they are not yet developed well enough for predictive use. Our knowledge of the internal structure of a porous catalyst is still rather rudimentary and imposes a basic limitation on theoretical predictions. We will give a brief account of Knudsen diffusion. [Pg.364]

Fast reaction Ha Z Numerical solution of diffusion-reaction equations in the film needed... [Pg.285]

The convective diffusion equations presented above have been used to model tablet dissolution in flowing fluids and the penetration of targeted macro-molecular drugs into solid tumors [5], In comparison with the nonequilibrium thermodynamics approach described below, the convective diffusion equations have the advantage of theoretical rigor. However, their mathematical complexity dictates a numerical solution in all but the simplest cases. [Pg.33]

Later, Kuppermann and Belford (1962a, b) initiated computer-based numerical solution of (7.1), giving the space-time variation of the species concentrations from these, the survival probability at a given time may be obtained by numerical integration over space. Since then, this method has been vigorously followed by others. John (1952) has discussed the convergence requirement for the discretized form of (7.1), which must be used in computers this turns out to be AT/(Ap)2normalized forms of r and t. Often, Ar/(Ap)2 = 1/6 is used to ensure better convergence. Of course, any procedure requires a reaction scheme, values of diffusion and rate coefficients, and a statement about initial number of species and their distribution in space (vide infra). [Pg.200]

Burns and Curtiss (1972) and Burns et al. (1984) have used the Facsimile program developed at AERE, Harwell to obtain a numerical solution of simultaneous partial differential equations of diffusion kinetics (see Eq. 7.1). In this procedure, the changes in the number of reactant species in concentric shells (spherical or cylindrical) by diffusion and reaction are calculated by a march of steps method. A very similar procedure has been adopted by Pimblott and La Verne (1990 La Verne and Pimblott, 1991). Later, Pimblott et al. (1996) analyzed carefully the relationship between the electron scavenging yield and the time dependence of eh yield through the Laplace transform, an idea first suggested by Balkas et al. (1970). These authors corrected for the artifactual effects of the experiments on eh decay and took into account the more recent data of Chernovitz and Jonah (1988). Their analysis raises the yield of eh at 100 ps to 4.8, in conformity with the value of Sumiyoshi et al. (1985). They also conclude that the time dependence of the eh yield and the yield of electron scavenging conform to each other through Laplace transform, but that neither is predicted correctly by the diffusion-kinetic model of water radiolysis. [Pg.219]

In the general case, when arbitrary interaction profiles prevail, the particle deposition rate must be obtained by solving the complete transport equations. The first numerical solution of the complete convective diffusional transport equations, including London-van der Waals attraction, gravity, Brownian diffusion and the complete hydrodynamical interactions, was obtained for a spherical collector [89]. Soon after, numerical solutions were obtained for a panoplea of other collector geometries... [Pg.210]

Photosensitization of diaryliodonium salts by anthracene occurs by a photoredox reaction in which an electron is transferred from an excited singlet or triplet state of the anthracene to the diaryliodonium initiator.13"15,17 The lifetimes of the anthracene singlet and triplet states are on the order of nanoseconds and microseconds respectively, and the bimolecular electron transfer reactions between the anthracene and the initiator are limited by the rate of diffusion of reactants, which in turn depends upon the system viscosity. In this contribution, we have studied the effects of viscosity on the rate of the photosensitization reaction of diaryliodonium salts by anthracene. Using steady-state fluorescence spectroscopy, we have characterized the photosensitization rate in propanol/glycerol solutions of varying viscosities. The results were analyzed using numerical solutions of the photophysical kinetic equations in conjunction with the mathematical relationships provided by the Smoluchowski16 theory for the rate constants of the diffusion-controlled bimolecular reactions. [Pg.96]

The experimental and simulation results presented here indicate that the system viscosity has an important effect on the overall rate of the photosensitization of diary liodonium salts by anthracene. These studies reveal that as the viscosity of the solvent is increased from 1 to 1000 cP, the overall rate of the photosensitization reaction decreases by an order of magnitude. This decrease in reaction rate is qualitatively explained using the Smoluchowski-Stokes-Einstein model for the rate constants of the bimolecular, diffusion-controlled elementary reactions in the numerical solution of the kinetic photophysical equations. A more quantitative fit between the experimental data and the simulation results was obtained by scaling the bimolecular rate constants by rj"07 rather than the rf1 as suggested by the Smoluchowski-Stokes-Einstein analysis. These simulation results provide a semi-empirical correlation which may be used to estimate the effective photosensitization rate constant for viscosities ranging from 1 to 1000 cP. [Pg.105]

Figure 5. Exact (numerical solution, continuous line) and linearised (equation (24), dotted line) velocity profile (i.e. vy of the fluid at different distances x from the surface) at y = 10-5 m in the case of laminar flow parallel to an active plane (Section 4.1). Parameters Dt = 10 9m2 s-1, v = 10-3ms-1, and v = 10-6m2s-1. The hydrodynamic boundary layer thickness (<50 = 5 x 10 4 m), equation (26), where 99% of v is reached is shown with a horizontal double arrow line. For comparison, the normalised concentration profile of species i, ct/ithe linear profile of the diffusion layer approach (continuous line) and its thickness (<5, = 3 x 10 5m, equation (34)) have been added. Notice that the linearisation of the exact velocity profile requires that <5, Figure 5. Exact (numerical solution, continuous line) and linearised (equation (24), dotted line) velocity profile (i.e. vy of the fluid at different distances x from the surface) at y = 10-5 m in the case of laminar flow parallel to an active plane (Section 4.1). Parameters Dt = 10 9m2 s-1, v = 10-3ms-1, and v = 10-6m2s-1. The hydrodynamic boundary layer thickness (<50 = 5 x 10 4 m), equation (26), where 99% of v is reached is shown with a horizontal double arrow line. For comparison, the normalised concentration profile of species i, ct/ithe linear profile of the diffusion layer approach (continuous line) and its thickness (<5, = 3 x 10 5m, equation (34)) have been added. Notice that the linearisation of the exact velocity profile requires that <5, <c <5o...
The nonlinearity of the system of partial differential equations (51) and (52) poses a serious obstacle to finding an analytical solution. A reported analytical solution for the nonlinear problem of diffusion coupled with complexation kinetics was erroneous [12]. Thus, techniques such as the finite element method [53-55] or appropriate change of variables (applicable in some cases of planar diffusion) [56] should be used to find the numerical solution. One particular case of the nonlinear problem where an analytical solution can be given is the steady-state for fully labile complexes (see Section 3.3). However, there is a reasonable assumption for many relevant cases (e.g. for trace elements such as... [Pg.179]

Perhaps even more important is die fact that LEM does not require a numerical solution to die Navier-Stokes equation. Indeed, even a three-dimensional diffusion equation is generally less computationally demanding than the Poisson equation needed to find die pressure field. [Pg.130]

Different techniques are commonly used to solve the diffusion equation (Carslaw and Jaeger, 1959). Analytic solutions can be found by variable separation, Fourier transforms or more conveniently Laplace transforms and other special techniques such as point sources or Green functions. Numerical solutions are calculated for the cases which have no simple analytic solution by finite differences (Mitchell, 1969 Fletcher, 1991), which is the simplest technique to implement, but also finite elements, particularly useful for complicated geometry (Zienkiewicz, 1977), and collocation methods (Finlayson, 1972). [Pg.428]

Butler and Pillingf) calculated an exact numerical solution of the diffusion equation. They showed that the interpolation formula proposed by Gosele et al.e) reproduces the numerical solution with high precision. [Pg.82]

Finally, as described in Box 4.1 of Chapter 4, an exact numerical solution of the diffusion equation (based on Fick s second law with an added sink term that falls off as r-6) was calculated by Butler and Pilling (1979). These authors showed that, even for high values of Ro ( 60 A), large errors are made when using the Forster equation for diffusion coefficients > 10 s cm2 s 1. Equation (9.34) proposed by Gosele et al. provides an excellent approximation. [Pg.260]

In a recent paper, an approximate calculation was made of effects (b) to (d) above (19), using an approximate analytical solution for the diffusion problem, for the case where the reaction occurs readily over a short range of separation distances of the reactants. In the present report, we summarize the results of our recent calculations on a numerical solution of the same problem. A more complete description is given elsewhere (28). One additional modification made here to (19) is to ensure that the current available rate constant data at AG° = 0 (Appendix) are satisfied. [Pg.237]


See other pages where Diffusion numerical solution is mentioned: [Pg.61]    [Pg.63]    [Pg.63]    [Pg.129]    [Pg.419]    [Pg.387]    [Pg.463]    [Pg.10]    [Pg.643]    [Pg.198]    [Pg.205]    [Pg.214]    [Pg.661]    [Pg.180]    [Pg.232]    [Pg.52]    [Pg.456]    [Pg.209]    [Pg.240]    [Pg.210]    [Pg.36]    [Pg.95]    [Pg.214]    [Pg.87]    [Pg.132]    [Pg.219]   
See also in sourсe #XX -- [ Pg.208 , Pg.209 , Pg.210 ]




SEARCH



Diffusion solutes

Diffusion solutions

Diffusivity numerical

Numerical diffusion

Numerical solution

© 2024 chempedia.info